# -*- coding: utf-8 -*- # This file is part of Eigen, a lightweight C++ template library # for linear algebra. # # Copyright (C) 2009 Benjamin Schindler # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # Pretty printers for Eigen::Matrix # This is still pretty basic as the python extension to gdb is still pretty basic. # It cannot handle complex eigen types and it doesn't support many of the other eigen types # This code supports fixed size as well as dynamic size matrices # To use it: # # * Create a directory and put the file as well as an empty __init__.py in # that directory. # * Create a ~/.gdbinit file, that contains the following: # python # import sys # sys.path.insert(0, '/path/to/eigen/printer/directory') # from printers import register_eigen_printers # register_eigen_printers(None) # end import gdb import re import itertools from bisect import bisect_left # Basic row/column iteration code for use with Sparse and Dense matrices class _MatrixEntryIterator(object): def __init__(self, rows, cols, row_major): self.rows = rows self.cols = cols self.currentRow = 0 self.currentCol = 0 self.rowMajor = row_major def __iter__(self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): row = self.currentRow col = self.currentCol if self.rowMajor == 0: if self.currentCol >= self.cols: raise StopIteration self.currentRow = self.currentRow + 1 if self.currentRow >= self.rows: self.currentRow = 0 self.currentCol = self.currentCol + 1 else: if self.currentRow >= self.rows: raise StopIteration self.currentCol = self.currentCol + 1 if self.currentCol >= self.cols: self.currentCol = 0 self.currentRow = self.currentRow + 1 return row, col class EigenMatrixPrinter: """Print Eigen Matrix or Array of some kind""" def __init__(self, variety, val): """Extract all the necessary information""" # Save the variety (presumably "Matrix" or "Array") for later usage self.variety = variety # The gdb extension does not support value template arguments - need to extract them by hand typeinfo = val.type if typeinfo.code == gdb.TYPE_CODE_REF: typeinfo = typeinfo.target() self.type = typeinfo.unqualified().strip_typedefs() tag = self.type.tag regex = re.compile('<.*>') m = regex.findall(tag)[0][1:-1] template_params = m.split(',') template_params = [x.replace(" ", "") for x in template_params] if template_params[1] in ['-0x00000000000000001', '-0x000000001', '-1']: self.rows = val['m_storage']['m_rows'] else: self.rows = int(template_params[1]) if template_params[2] in ['-0x00000000000000001', '-0x000000001', '-1']: self.cols = val['m_storage']['m_cols'] else: self.cols = int(template_params[2]) self.options = 0 # default value if len(template_params) > 3: self.options = template_params[3] self.rowMajor = (int(self.options) & 0x1) self.innerType = self.type.template_argument(0) self.val = val # Fixed size matrices have a struct as their storage, so we need to walk through this self.data = self.val['m_storage']['m_data'] if self.data.type.code == gdb.TYPE_CODE_STRUCT: self.data = self.data['array'] self.data = self.data.cast(self.innerType.pointer()) class _Iterator(_MatrixEntryIterator): def __init__(self, rows, cols, data_ptr, row_major): super(EigenMatrixPrinter._Iterator, self).__init__(rows, cols, row_major) self.dataPtr = data_ptr def __next__(self): row, col = super(EigenMatrixPrinter._Iterator, self).__next__() item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 if self.cols == 1: # if it's a column vector return '[%d]' % (row,), item elif self.rows == 1: # if it's a row vector return '[%d]' % (col,), item return '[%d,%d]' % (row, col), item def children(self): return self._Iterator(self.rows, self.cols, self.data, self.rowMajor) def to_string(self): return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % ( self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else "ColMajor", self.data) class EigenSparseMatrixPrinter: """Print an Eigen SparseMatrix""" def __init__(self, val): """Extract all the necessary information""" typeinfo = val.type if typeinfo.code == gdb.TYPE_CODE_REF: typeinfo = typeinfo.target() self.type = typeinfo.unqualified().strip_typedefs() tag = self.type.tag regex = re.compile('<.*>') m = regex.findall(tag)[0][1:-1] template_params = m.split(',') template_params = [x.replace(" ", "") for x in template_params] self.options = 0 if len(template_params) > 1: self.options = template_params[1] self.rowMajor = (int(self.options) & 0x1) self.innerType = self.type.template_argument(0) self.val = val self.data = self.val['m_data'] self.data = self.data.cast(self.innerType.pointer()) class _Iterator(_MatrixEntryIterator): def __init__(self, rows, cols, val, row_major): super(EigenSparseMatrixPrinter._Iterator, self).__init__(rows, cols, row_major) self.val = val def __next__(self): row, col = super(EigenSparseMatrixPrinter._Iterator, self).__next__() # repeat calculations from SparseMatrix.h: outer = row if self.rowMajor else col inner = col if self.rowMajor else row start = self.val['m_outerIndex'][outer] end = ( (start + self.val['m_innerNonZeros'][outer]) if self.val['m_innerNonZeros'] else self.val['m_outerIndex'][outer+1] ) # and from CompressedStorage.h: data = self.val['m_data'] if start >= end: item = 0 elif (end > start) and (inner == data['m_indices'][end-1]): item = data['m_values'][end-1] else: # create Python index list from the target range within m_indices indices = [data['m_indices'][x] for x in range(int(start), int(end)-1)] # find the index with binary search idx = int(start) + bisect_left(indices, inner) if idx < end and data['m_indices'][idx] == inner: item = data['m_values'][idx] else: item = 0 return '[%d,%d]' % (row, col), item def children(self): if self.data: return self._Iterator(self.rows(), self.cols(), self.val, self.rowMajor) return iter([]) # empty matrix, for now def rows(self): return self.val['m_outerSize'] if self.rowMajor else self.val['m_innerSize'] def cols(self): return self.val['m_innerSize'] if self.rowMajor else self.val['m_outerSize'] def to_string(self): if self.data: status = ("not compressed" if self.val['m_innerNonZeros'] else "compressed") else: status = "empty" dimensions = "%d x %d" % (self.rows(), self.cols()) layout = "row" if self.rowMajor else "column" return "Eigen::SparseMatrix<%s>, %s, %s major, %s" % ( self.innerType, dimensions, layout, status) class EigenQuaternionPrinter: """Print an Eigen Quaternion""" def __init__(self, val): """Extract all the necessary information""" # The gdb extension does not support value template arguments - need to extract them by hand typeinfo = val.type if typeinfo.code == gdb.TYPE_CODE_REF: typeinfo = typeinfo.target() self.type = typeinfo.unqualified().strip_typedefs() self.innerType = self.type.template_argument(0) self.val = val # Quaternions have a struct as their storage, so we need to walk through this self.data = self.val['m_coeffs']['m_storage']['m_data']['array'] self.data = self.data.cast(self.innerType.pointer()) class _Iterator: def __init__(self, data_ptr): self.dataPtr = data_ptr self.currentElement = 0 self.elementNames = ['x', 'y', 'z', 'w'] def __iter__(self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): element = self.currentElement if self.currentElement >= 4: # there are 4 elements in a quaternion raise StopIteration self.currentElement = self.currentElement + 1 item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 return '[%s]' % (self.elementNames[element],), item def children(self): return self._Iterator(self.data) def to_string(self): return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data) def cast_eigen_block_to_matrix(val): # Get the type of the variable (and convert to a string) # Example: 'const Eigen::Block, -1, -1, false> const, -1, -1, false>' type = str(val.type) # Extract the Eigen::Matrix type from the Block: # From the previous example: Eigen::Matrix begin = type.find('Eigen::Matrix<') end = type.find('>', begin) + 1 # Convert the Eigen::Block to an Eigen::Matrix return val.cast(gdb.lookup_type(type[begin:end])) def build_eigen_dictionary(): pretty_printers_dict[re.compile('^Eigen::Quaternion<.*>$')] = lambda val: EigenQuaternionPrinter(val) pretty_printers_dict[re.compile('^Eigen::Matrix<.*>$')] = lambda val: EigenMatrixPrinter("Matrix", val) pretty_printers_dict[re.compile('^Eigen::Block<.*>$')] =\ lambda val: EigenMatrixPrinter("Matrix", cast_eigen_block_to_matrix(val)) pretty_printers_dict[re.compile('^Eigen::VectorBlock<.*>$')] =\ lambda val: EigenMatrixPrinter("Matrix", cast_eigen_block_to_matrix(val)) pretty_printers_dict[re.compile('^Eigen::SparseMatrix<.*>$')] = lambda val: EigenSparseMatrixPrinter(val) pretty_printers_dict[re.compile('^Eigen::Array<.*>$')] = lambda val: EigenMatrixPrinter("Array", val) def register_eigen_printers(obj): """Register eigen pretty-printers with objfile Obj""" if obj is None: obj = gdb obj.pretty_printers.append(lookup_function) def lookup_function(val): """Look-up and return a pretty-printer that can print val.""" typeinfo = val.type if typeinfo.code == gdb.TYPE_CODE_REF: typeinfo = typeinfo.target() typeinfo = typeinfo.unqualified().strip_typedefs() typename = typeinfo.tag if typename is None: return None for function in pretty_printers_dict: if function.search(typename): return pretty_printers_dict[function](val) return None pretty_printers_dict = {} build_eigen_dictionary()