// FIXME - this example is not too good as that functionality is provided in the Eigen API // additionally it's quite heavy. the CwiseUnaryOp example is better. #include <Eigen/Core> USING_PART_OF_NAMESPACE_EIGEN using namespace std; // define a custom template binary functor template<typename Scalar> struct CwiseMinOp EIGEN_EMPTY_STRUCT { Scalar operator()(const Scalar& a, const Scalar& b) const { return std::min(a,b); } enum { Cost = Eigen::ConditionalJumpCost + Eigen::NumTraits<Scalar>::AddCost }; }; // define a custom binary operator between two matrices template<typename Derived1, typename Derived2> const Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2> cwiseMin(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2) { return Eigen::CwiseBinaryOp<CwiseMinOp<typename Derived1::Scalar>, Derived1, Derived2>(mat1, mat2); } int main(int, char**) { Matrix4d m1 = Matrix4d::random(), m2 = Matrix4d::random(); cout << cwiseMin(m1,m2) << endl; // use our new global operator cout << m1.cwise<CwiseMinOp<double> >(m2) << endl; // directly use the generic expression member cout << m1.cwise(m2, CwiseMinOp<double>()) << endl; // directly use the generic expression member (variant) return 0; }