// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // Copyright (C) 2007-2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DIAGONALMATRIX_H #define EIGEN_DIAGONALMATRIX_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { /** \class DiagonalBase * \ingroup Core_Module * * \brief Base class for diagonal matrices and expressions * * This is the base class that is inherited by diagonal matrix and related expression * types, which internally use a vector for storing the diagonal entries. Diagonal * types always represent square matrices. * * \tparam Derived is the derived type, a DiagonalMatrix or DiagonalWrapper. * * \sa class DiagonalMatrix, class DiagonalWrapper */ template class DiagonalBase : public EigenBase { public: typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::RealScalar RealScalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::StorageIndex StorageIndex; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, IsVectorAtCompileTime = 0, Flags = NoPreferredStorageOrderBit }; typedef Matrix DenseMatrixType; typedef DenseMatrixType DenseType; typedef DiagonalMatrix PlainObject; /** \returns a reference to the derived object. */ EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } /** \returns a const reference to the derived object. */ EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } /** * Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type, * not an expression. * \returns A dense matrix, with its diagonal entries set from the the derived object. */ EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { return derived(); } /** \returns a reference to the derived object's vector of diagonal coefficients. */ EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } /** \returns a const reference to the derived object's vector of diagonal coefficients. */ EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return derived().diagonal(); } /** \returns the value of the coefficient as if \c *this was a dense matrix. */ EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { eigen_assert(row >= 0 && col >= 0 && row < rows() && col <= cols()); return row == col ? diagonal().coeff(row) : Scalar(0); } /** \returns the number of rows. */ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const { return diagonal().size(); } /** \returns the number of columns. */ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const { return diagonal().size(); } /** \returns the diagonal matrix product of \c *this by the dense matrix, \a matrix */ template EIGEN_DEVICE_FUNC const Product operator*( const MatrixBase& matrix) const { return Product(derived(), matrix.derived()); } template using DiagonalProductReturnType = DiagonalWrapper; /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a other */ template EIGEN_DEVICE_FUNC const DiagonalProductReturnType operator*( const DiagonalBase& other) const { return diagonal().cwiseProduct(other.diagonal()).asDiagonal(); } using DiagonalInverseReturnType = DiagonalWrapper, const DiagonalVectorType>>; /** \returns the inverse \c *this. Computed as the coefficient-wise inverse of the diagonal. */ EIGEN_DEVICE_FUNC inline const DiagonalInverseReturnType inverse() const { return diagonal().cwiseInverse().asDiagonal(); } using DiagonalScaleReturnType = DiagonalWrapper; /** \returns the product of \c *this by the scalar \a scalar */ EIGEN_DEVICE_FUNC inline const DiagonalScaleReturnType operator*(const Scalar& scalar) const { return (diagonal() * scalar).asDiagonal(); } using ScaleDiagonalReturnType = DiagonalWrapper; /** \returns the product of a scalar and the diagonal matrix \a other */ EIGEN_DEVICE_FUNC friend inline const ScaleDiagonalReturnType operator*(const Scalar& scalar, const DiagonalBase& other) { return (scalar * other.diagonal()).asDiagonal(); } template using DiagonalSumReturnType = DiagonalWrapper; /** \returns the sum of \c *this and the diagonal matrix \a other */ template EIGEN_DEVICE_FUNC inline const DiagonalSumReturnType operator+( const DiagonalBase& other) const { return (diagonal() + other.diagonal()).asDiagonal(); } template using DiagonalDifferenceReturnType = DiagonalWrapper; /** \returns the difference of \c *this and the diagonal matrix \a other */ template EIGEN_DEVICE_FUNC inline const DiagonalDifferenceReturnType operator-( const DiagonalBase& other) const { return (diagonal() - other.diagonal()).asDiagonal(); } }; /** \class DiagonalMatrix * \ingroup Core_Module * * \brief Represents a diagonal matrix with its storage * * \tparam Scalar_ the type of coefficients * \tparam SizeAtCompileTime the dimension of the matrix, or Dynamic * \tparam MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults * to SizeAtCompileTime. Most of the time, you do not need to specify it. * * \sa class DiagonalBase, class DiagonalWrapper */ namespace internal { template struct traits> : traits> { typedef Matrix DiagonalVectorType; typedef DiagonalShape StorageKind; enum { Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit }; }; } // namespace internal template class DiagonalMatrix : public DiagonalBase> { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; typedef const DiagonalMatrix& Nested; typedef Scalar_ Scalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::StorageIndex StorageIndex; #endif protected: DiagonalVectorType m_diagonal; public: /** const version of diagonal(). */ EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return m_diagonal; } /** \returns a reference to the stored vector of diagonal coefficients. */ EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return m_diagonal; } /** Default constructor without initialization */ EIGEN_DEVICE_FUNC inline DiagonalMatrix() {} /** Constructs a diagonal matrix with given dimension */ EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} /** 2D constructor. */ EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x, y) {} /** 3D constructor. */ EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x, y, z) {} /** \brief Construct a diagonal matrix with fixed size from an arbitrary number of coefficients. * * \warning To construct a diagonal matrix of fixed size, the number of values passed to this * constructor must match the fixed dimension of \c *this. * * \sa DiagonalMatrix(const Scalar&, const Scalar&) * \sa DiagonalMatrix(const Scalar&, const Scalar&, const Scalar&) */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DiagonalMatrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const ArgTypes&... args) : m_diagonal(a0, a1, a2, args...) {} /** \brief Constructs a DiagonalMatrix and initializes it by elements given by an initializer list of initializer * lists \cpp11 */ EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE DiagonalMatrix( const std::initializer_list>& list) : m_diagonal(list) {} /** \brief Constructs a DiagonalMatrix from an r-value diagonal vector type */ EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(DiagonalVectorType&& diag) : m_diagonal(std::move(diag)) {} /** Copy constructor. */ template EIGEN_DEVICE_FUNC inline DiagonalMatrix(const DiagonalBase& other) : m_diagonal(other.diagonal()) {} #ifndef EIGEN_PARSED_BY_DOXYGEN /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {} #endif /** generic constructor from expression of the diagonal coefficients */ template EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(const MatrixBase& other) : m_diagonal(other) {} /** Copy operator. */ template EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalBase& other) { m_diagonal = other.diagonal(); return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalMatrix& other) { m_diagonal = other.diagonal(); return *this; } #endif typedef DiagonalWrapper, DiagonalVectorType>> InitializeReturnType; /** Initializes a diagonal matrix of size SizeAtCompileTime with coefficients set to zero */ EIGEN_DEVICE_FUNC static const InitializeReturnType Zero() { return DiagonalVectorType::Zero().asDiagonal(); } /** Initializes a diagonal matrix of size dim with coefficients set to zero */ EIGEN_DEVICE_FUNC static const InitializeReturnType Zero(Index size) { return DiagonalVectorType::Zero(size).asDiagonal(); } /** Initializes a identity matrix of size SizeAtCompileTime */ EIGEN_DEVICE_FUNC static const InitializeReturnType Identity() { return DiagonalVectorType::Ones().asDiagonal(); } /** Initializes a identity matrix of size dim */ EIGEN_DEVICE_FUNC static const InitializeReturnType Identity(Index size) { return DiagonalVectorType::Ones(size).asDiagonal(); } /** Resizes to given size. */ EIGEN_DEVICE_FUNC inline void resize(Index size) { m_diagonal.resize(size); } /** Sets all coefficients to zero. */ EIGEN_DEVICE_FUNC inline void setZero() { m_diagonal.setZero(); } /** Resizes and sets all coefficients to zero. */ EIGEN_DEVICE_FUNC inline void setZero(Index size) { m_diagonal.setZero(size); } /** Sets this matrix to be the identity matrix of the current size. */ EIGEN_DEVICE_FUNC inline void setIdentity() { m_diagonal.setOnes(); } /** Sets this matrix to be the identity matrix of the given size. */ EIGEN_DEVICE_FUNC inline void setIdentity(Index size) { m_diagonal.setOnes(size); } }; /** \class DiagonalWrapper * \ingroup Core_Module * * \brief Expression of a diagonal matrix * * \tparam DiagonalVectorType_ the type of the vector of diagonal coefficients * * This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients, * instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal() * and most of the time this is the only way that it is used. * * \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal() */ namespace internal { template struct traits> { typedef DiagonalVectorType_ DiagonalVectorType; typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::StorageIndex StorageIndex; typedef DiagonalShape StorageKind; typedef typename traits::XprKind XprKind; enum { RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, Flags = (traits::Flags & LvalueBit) | NoPreferredStorageOrderBit }; }; } // namespace internal template class DiagonalWrapper : public DiagonalBase>, internal::no_assignment_operator { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef DiagonalVectorType_ DiagonalVectorType; typedef DiagonalWrapper Nested; #endif /** Constructor from expression of diagonal coefficients to wrap. */ EIGEN_DEVICE_FUNC explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} /** \returns a const reference to the wrapped expression of diagonal coefficients. */ EIGEN_DEVICE_FUNC const DiagonalVectorType& diagonal() const { return m_diagonal; } protected: typename DiagonalVectorType::Nested m_diagonal; }; /** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients * * \only_for_vectors * * Example: \include MatrixBase_asDiagonal.cpp * Output: \verbinclude MatrixBase_asDiagonal.out * * \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal() **/ template EIGEN_DEVICE_FUNC inline const DiagonalWrapper MatrixBase::asDiagonal() const { return DiagonalWrapper(derived()); } /** \returns true if *this is approximately equal to a diagonal matrix, * within the precision given by \a prec. * * Example: \include MatrixBase_isDiagonal.cpp * Output: \verbinclude MatrixBase_isDiagonal.out * * \sa asDiagonal() */ template bool MatrixBase::isDiagonal(const RealScalar& prec) const { if (cols() != rows()) return false; RealScalar maxAbsOnDiagonal = static_cast(-1); for (Index j = 0; j < cols(); ++j) { RealScalar absOnDiagonal = numext::abs(coeff(j, j)); if (absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; } for (Index j = 0; j < cols(); ++j) for (Index i = 0; i < j; ++i) { if (!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false; if (!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false; } return true; } namespace internal { template <> struct storage_kind_to_shape { typedef DiagonalShape Shape; }; struct Diagonal2Dense {}; template <> struct AssignmentKind { typedef Diagonal2Dense Kind; }; // Diagonal matrix to Dense assignment template struct Assignment { static void run(DstXprType& dst, const SrcXprType& src, const internal::assign_op& /*func*/) { Index dstRows = src.rows(); Index dstCols = src.cols(); if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); dst.setZero(); dst.diagonal() = src.diagonal(); } static void run(DstXprType& dst, const SrcXprType& src, const internal::add_assign_op& /*func*/) { dst.diagonal() += src.diagonal(); } static void run(DstXprType& dst, const SrcXprType& src, const internal::sub_assign_op& /*func*/) { dst.diagonal() -= src.diagonal(); } }; } // namespace internal } // end namespace Eigen #endif // EIGEN_DIAGONALMATRIX_H