// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NUMTRAITS_H #define EIGEN_NUMTRAITS_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { // default implementation of digits(), based on numeric_limits if specialized, // 0 for integer types, and log2(epsilon()) otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_digits_impl { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits::digits; } }; template struct default_digits_impl // Floating point { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { using std::ceil; using std::log2; typedef typename NumTraits::Real Real; return int(ceil(-log2(NumTraits::epsilon()))); } }; template struct default_digits_impl // Integer { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } }; // default implementation of digits10(), based on numeric_limits if specialized, // 0 for integer types, and floor((digits()-1)*log10(2)) otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_digits10_impl { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits::digits10; } }; template struct default_digits10_impl // Floating point { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { using std::floor; using std::log10; typedef typename NumTraits::Real Real; return int(floor((internal::default_digits_impl::run() - 1) * log10(2))); } }; template struct default_digits10_impl // Integer { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } }; // default implementation of max_digits10(), based on numeric_limits if specialized, // 0 for integer types, and log10(2) * digits() + 1 otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_max_digits10_impl { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits::max_digits10; } }; template struct default_max_digits10_impl // Floating point { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { using std::ceil; using std::log10; typedef typename NumTraits::Real Real; return int(ceil(internal::default_digits_impl::run() * log10(2) + 1)); } }; template struct default_max_digits10_impl // Integer { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } }; } // end namespace internal namespace numext { /** \internal bit-wise cast without changing the underlying bit representation. */ // TODO: Replace by std::bit_cast (available in C++20) template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) { // The behaviour of memcpy is not specified for non-trivially copyable types EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value, THIS_TYPE_IS_NOT_SUPPORTED); EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value && std::is_default_constructible::value, THIS_TYPE_IS_NOT_SUPPORTED); EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED); Tgt tgt; // Load src into registers first. This allows the memcpy to be elided by CUDA. const Src staged = src; EIGEN_USING_STD(memcpy) memcpy(static_cast(&tgt), static_cast(&staged), sizeof(Tgt)); return tgt; } } // namespace numext /** \class NumTraits * \ingroup Core_Module * * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. * * \tparam T the numeric type at hand * * This class stores enums, typedefs and static methods giving information about a numeric type. * * The provided data consists of: * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, * then \c Real is just a typedef to \a T. If \a T is \c std::complex then \c Real * is a typedef to \a U. * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is * only intended as a helper for code that needs to explicitly promote types. * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c * std::complex, Literal is defined as \c U. Of course, this type must be fully compatible with \a T. In doubt, just * use \a T here. \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you * don't know what this means, just use \a T here. \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c * std::complex type, and to 0 otherwise. \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type * such as \c int, and to \c 0 otherwise. \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of * the number of CPU cycles needed to by move / add / mul instructions respectively, assuming the data is already stored * in CPU registers. Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just * use \c Eigen::HugeCost. \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T * is unsigned. \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type * \a T must be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 * otherwise. \li An epsilon() function which, unlike std::numeric_limits::epsilon(), it returns a * \a Real instead of a \a T. \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a * default value by the fuzzy comparison operators. \li highest() and lowest() functions returning the highest and * lowest possible values respectively. \li digits() function returning the number of radix digits (non-sign digits for * integers, mantissa for floating-point). This is the analogue of std::numeric_limits::digits which is used * as the default implementation if specialized. \li digits10() function returning the number of decimal digits that can * be represented without change. This is the analogue of std::numeric_limits::digits10 which is * used as the default implementation if specialized. \li max_digits10() function returning the number of decimal digits * required to uniquely represent all distinct values of the type. This is the analogue of std::numeric_limits::max_digits10 * which is used as the default implementation if specialized. * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively, * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent * to std::numeric_limits::min_exponent/ * std::numeric_limits::max_exponent. * \li infinity() function returning a representation of positive infinity, if available. * \li quiet_NaN function returning a non-signaling "not-a-number", if available. */ template struct GenericNumTraits { enum { IsInteger = std::numeric_limits::is_integer, IsSigned = std::numeric_limits::is_signed, IsComplex = 0, RequireInitialization = internal::is_arithmetic::value ? 0 : 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; typedef T Real; typedef std::conditional_t, T> NonInteger; typedef T Nested; typedef T Literal; EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real epsilon() { return numext::numeric_limits::epsilon(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits10() { return internal::default_digits10_impl::run(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_digits10() { return internal::default_max_digits10_impl::run(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits() { return internal::default_digits_impl::run(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int min_exponent() { return numext::numeric_limits::min_exponent; } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_exponent() { return numext::numeric_limits::max_exponent; } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real dummy_precision() { // make sure to override this for floating-point types return Real(0); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T highest() { return (numext::numeric_limits::max)(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T lowest() { return (numext::numeric_limits::lowest)(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T infinity() { return numext::numeric_limits::infinity(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T quiet_NaN() { return numext::numeric_limits::quiet_NaN(); } }; template struct NumTraits : GenericNumTraits {}; template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline float dummy_precision() { return 1e-5f; } }; template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline double dummy_precision() { return 1e-12; } }; // GPU devices treat `long double` as `double`. #ifndef EIGEN_GPU_COMPILE_PHASE template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline long double dummy_precision() { return static_cast(1e-15l); } #if defined(EIGEN_ARCH_PPC) && (__LDBL_MANT_DIG__ == 106) // PowerPC double double causes issues with some values EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline long double epsilon() { // 2^(-(__LDBL_MANT_DIG__)+1) return static_cast(2.4651903288156618919116517665087e-32l); } #endif }; #endif template struct NumTraits > : GenericNumTraits > { typedef Real_ Real; typedef typename NumTraits::Literal Literal; enum { IsComplex = 1, RequireInitialization = NumTraits::RequireInitialization, ReadCost = 2 * NumTraits::ReadCost, AddCost = 2 * NumTraits::AddCost, MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost }; EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real epsilon() { return NumTraits::epsilon(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real dummy_precision() { return NumTraits::dummy_precision(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits10() { return NumTraits::digits10(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_digits10() { return NumTraits::max_digits10(); } }; template struct NumTraits > { typedef Array ArrayType; typedef typename NumTraits::Real RealScalar; typedef Array Real; typedef typename NumTraits::NonInteger NonIntegerScalar; typedef Array NonInteger; typedef ArrayType& Nested; typedef typename NumTraits::Literal Literal; enum { IsComplex = NumTraits::IsComplex, IsInteger = NumTraits::IsInteger, IsSigned = NumTraits::IsSigned, RequireInitialization = 1, ReadCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::ReadCost), AddCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::AddCost), MulCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::MulCost) }; EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline RealScalar epsilon() { return NumTraits::epsilon(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline RealScalar dummy_precision() { return NumTraits::dummy_precision(); } EIGEN_CONSTEXPR static inline int digits10() { return NumTraits::digits10(); } EIGEN_CONSTEXPR static inline int max_digits10() { return NumTraits::max_digits10(); } }; template <> struct NumTraits : GenericNumTraits { enum { RequireInitialization = 1, ReadCost = HugeCost, AddCost = HugeCost, MulCost = HugeCost }; EIGEN_CONSTEXPR static inline int digits10() { return 0; } EIGEN_CONSTEXPR static inline int max_digits10() { return 0; } private: static inline std::string epsilon(); static inline std::string dummy_precision(); static inline std::string lowest(); static inline std::string highest(); static inline std::string infinity(); static inline std::string quiet_NaN(); }; // Empty specialization for void to allow template specialization based on NumTraits::Real with T==void and SFINAE. template <> struct NumTraits {}; template <> struct NumTraits : GenericNumTraits {}; } // end namespace Eigen #endif // EIGEN_NUMTRAITS_H