// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include static void test_full_reductions_sycl() { cl::sycl::gpu_selector s; cl::sycl::queue q(s, [=](cl::sycl::exception_list l) { for (const auto& e : l) { try { std::rethrow_exception(e); } catch (cl::sycl::exception e) { std::cout << e.what() << std::endl; } } }); Eigen::SyclDevice sycl_device(q); const int num_rows = 452; const int num_cols = 765; array tensorRange = {{num_rows, num_cols}}; Tensor in(tensorRange); in.setRandom(); Tensor full_redux; Tensor full_redux_g; full_redux = in.sum(); float* out_data = (float*)sycl_device.allocate(sizeof(float)); TensorMap > in_gpu(in.data(), tensorRange); TensorMap > full_redux_gpu(out_data); full_redux_gpu.device(sycl_device) = in_gpu.sum(); sycl_device.deallocate(out_data); // Check that the CPU and GPU reductions return the same result. VERIFY_IS_APPROX(full_redux_gpu(), full_redux()); } static void test_first_dim_reductions_sycl() { cl::sycl::gpu_selector s; cl::sycl::queue q(s, [=](cl::sycl::exception_list l) { for (const auto& e : l) { try { std::rethrow_exception(e); } catch (cl::sycl::exception e) { std::cout << e.what() << std::endl; } } }); Eigen::SyclDevice sycl_device(q); int dim_x = 145; int dim_y = 1; int dim_z = 67; array tensorRange = {{dim_x, dim_y, dim_z}}; Tensor in(tensorRange); in.setRandom(); Eigen::array red_axis; red_axis[0] = 0; Tensor redux = in.sum(red_axis); array reduced_tensorRange = {{dim_y, dim_z}}; Tensor redux_g(reduced_tensorRange); TensorMap > in_gpu(in.data(), tensorRange); float* out_data = (float*)sycl_device.allocate(dim_y*dim_z*sizeof(float)); TensorMap > redux_gpu(out_data, dim_y, dim_z ); redux_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.deallocate(out_data); // Check that the CPU and GPU reductions return the same result. for(int j=0; j tensorRange = {{dim_x, dim_y, dim_z}}; Tensor in(tensorRange); in.setRandom(); Eigen::array red_axis; red_axis[0] = 2; Tensor redux = in.sum(red_axis); array reduced_tensorRange = {{dim_x, dim_y}}; Tensor redux_g(reduced_tensorRange); TensorMap > in_gpu(in.data(), tensorRange); float* out_data = (float*)sycl_device.allocate(dim_x*dim_y*sizeof(float)); TensorMap > redux_gpu(out_data, dim_x, dim_y ); redux_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.deallocate(out_data); // Check that the CPU and GPU reductions return the same result. for(int j=0; j