// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "main.h" // using namespace Eigen; template<typename T> T ei_negate(const T& x) { return -x; } template<typename Scalar> bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) { return ei_isMuchSmallerThan(a-b, refvalue); } template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) { for (int i=0; i<size; ++i) { if (!isApproxAbs(a[i],b[i],refvalue)) { std::cout << "a[" << i << "]: " << a[i] << " != b[" << i << "]: " << b[i] << std::endl; return false; } } return true; } template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i<size; ++i) { if (!ei_isApprox(a[i],b[i])) { std::cout << "a[" << i << "]: " << a[i] << " != b[" << i << "]: " << b[i] << std::endl; return false; } } return true; } #define CHECK_CWISE2(REFOP, POP) { \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ ei_pstore(data2, POP(ei_pload<Packet>(data1), ei_pload<Packet>(data1+PacketSize))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } #define CHECK_CWISE1(REFOP, POP) { \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ ei_pstore(data2, POP(ei_pload<Packet>(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } template<bool Cond,typename Packet> struct packet_helper { template<typename T> inline Packet load(const T* from) const { return ei_pload<Packet>(from); } template<typename T> inline void store(T* to, const Packet& x) const { ei_pstore(to,x); } }; template<typename Packet> struct packet_helper<false,Packet> { template<typename T> inline T load(const T* from) const { return *from; } template<typename T> inline void store(T* to, const T& x) const { *to = x; } }; #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ packet_helper<COND,Packet> h; \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ h.store(data2, POP(h.load(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } #define REF_ADD(a,b) ((a)+(b)) #define REF_SUB(a,b) ((a)-(b)) #define REF_MUL(a,b) ((a)*(b)) #define REF_DIV(a,b) ((a)/(b)) template<typename Scalar> void packetmath() { typedef typename ei_packet_traits<Scalar>::type Packet; const int PacketSize = ei_packet_traits<Scalar>::size; typedef typename NumTraits<Scalar>::Real RealScalar; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar data2[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Packet packets[PacketSize*2]; EIGEN_ALIGN16 Scalar ref[ei_packet_traits<Scalar>::size*4]; RealScalar refvalue = 0; for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>(); data2[i] = ei_random<Scalar>(); refvalue = std::max(refvalue,ei_abs(data1[i])); } ei_pstore(data2, ei_pload<Packet>(data1)); VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); for (int offset=0; offset<PacketSize; ++offset) { ei_pstore(data2, ei_ploadu<Packet>(data1+offset)); VERIFY(areApprox(data1+offset, data2, PacketSize) && "ei_ploadu"); } for (int offset=0; offset<PacketSize; ++offset) { ei_pstoreu(data2+offset, ei_pload<Packet>(data1)); VERIFY(areApprox(data1, data2+offset, PacketSize) && "ei_pstoreu"); } for (int offset=0; offset<PacketSize; ++offset) { packets[0] = ei_pload<Packet>(data1); packets[1] = ei_pload<Packet>(data1+PacketSize); if (offset==0) ei_palign<0>(packets[0], packets[1]); else if (offset==1) ei_palign<1>(packets[0], packets[1]); else if (offset==2) ei_palign<2>(packets[0], packets[1]); else if (offset==3) ei_palign<3>(packets[0], packets[1]); ei_pstore(data2, packets[0]); for (int i=0; i<PacketSize; ++i) ref[i] = data1[i+offset]; typedef Matrix<Scalar, PacketSize, 1> Vector; VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign"); } CHECK_CWISE2(REF_ADD, ei_padd); CHECK_CWISE2(REF_SUB, ei_psub); CHECK_CWISE2(REF_MUL, ei_pmul); #ifndef EIGEN_VECTORIZE_ALTIVEC if (!ei_is_same_type<Scalar,int>::ret) CHECK_CWISE2(REF_DIV, ei_pdiv); #endif CHECK_CWISE1(ei_negate, ei_pnegate); CHECK_CWISE1(ei_conj, ei_pconj); for (int i=0; i<PacketSize; ++i) ref[i] = data1[0]; ei_pstore(data2, ei_pset1<Packet>(data1[0])); VERIFY(areApprox(ref, data2, PacketSize) && "ei_pset1"); VERIFY(ei_isApprox(data1[0], ei_pfirst(ei_pload<Packet>(data1))) && "ei_pfirst"); ref[0] = 0; for (int i=0; i<PacketSize; ++i) ref[0] += data1[i]; VERIFY(isApproxAbs(ref[0], ei_predux(ei_pload<Packet>(data1)), refvalue) && "ei_predux"); ref[0] = 1; for (int i=0; i<PacketSize; ++i) ref[0] *= data1[i]; VERIFY(ei_isApprox(ref[0], ei_predux_mul(ei_pload<Packet>(data1))) && "ei_predux_mul"); for (int j=0; j<PacketSize; ++j) { ref[j] = 0; for (int i=0; i<PacketSize; ++i) ref[j] += data1[i+j*PacketSize]; packets[j] = ei_pload<Packet>(data1+j*PacketSize); } ei_pstore(data2, ei_preduxp(packets)); VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "ei_preduxp"); for (int i=0; i<PacketSize; ++i) ref[i] = data1[PacketSize-i-1]; ei_pstore(data2, ei_preverse(ei_pload<Packet>(data1))); VERIFY(areApprox(ref, data2, PacketSize) && "ei_preverse"); } template<typename Scalar> void packetmath_real() { typedef typename ei_packet_traits<Scalar>::type Packet; const int PacketSize = ei_packet_traits<Scalar>::size; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar data2[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar ref[ei_packet_traits<Scalar>::size*4]; for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>(-1e3,1e3); data2[i] = ei_random<Scalar>(-1e3,1e3); } CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSin, ei_sin, ei_psin); CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasCos, ei_cos, ei_pcos); for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>(-87,88); data2[i] = ei_random<Scalar>(-87,88); } CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasExp, ei_exp, ei_pexp); for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>(0,1e6); data2[i] = ei_random<Scalar>(0,1e6); } CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasLog, ei_log, ei_plog); CHECK_CWISE1_IF(ei_packet_traits<Scalar>::HasSqrt, ei_sqrt, ei_psqrt); ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = std::min(ref[0],data1[i]); VERIFY(ei_isApprox(ref[0], ei_predux_min(ei_pload<Packet>(data1))) && "ei_predux_min"); CHECK_CWISE2(std::min, ei_pmin); CHECK_CWISE2(std::max, ei_pmax); CHECK_CWISE1(ei_abs, ei_pabs); ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = std::max(ref[0],data1[i]); VERIFY(ei_isApprox(ref[0], ei_predux_max(ei_pload<Packet>(data1))) && "ei_predux_max"); } template<typename Scalar> void packetmath_complex() { typedef typename ei_packet_traits<Scalar>::type Packet; const int PacketSize = ei_packet_traits<Scalar>::size; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[PacketSize*4]; EIGEN_ALIGN16 Scalar data2[PacketSize*4]; EIGEN_ALIGN16 Scalar ref[PacketSize*4]; EIGEN_ALIGN16 Scalar pval[PacketSize*4]; for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>() * Scalar(1e2); data2[i] = ei_random<Scalar>() * Scalar(1e2); } { ei_conj_helper<Scalar,Scalar,false,false> cj; ei_conj_helper<Packet,Packet,false,false> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = data1[i] * data2[i]; VERIFY(ei_isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper"); } ei_pstore(pval,pcj.pmul(ei_pload<Packet>(data1),ei_pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper"); } { ei_conj_helper<Scalar,Scalar,true,false> cj; ei_conj_helper<Packet,Packet,true,false> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = ei_conj(data1[i]) * data2[i]; VERIFY(ei_isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper"); } ei_pstore(pval,pcj.pmul(ei_pload<Packet>(data1),ei_pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper"); } { ei_conj_helper<Scalar,Scalar,false,true> cj; ei_conj_helper<Packet,Packet,false,true> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = data1[i] * ei_conj(data2[i]); VERIFY(ei_isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper"); } ei_pstore(pval,pcj.pmul(ei_pload<Packet>(data1),ei_pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper"); } { ei_conj_helper<Scalar,Scalar,true,true> cj; ei_conj_helper<Packet,Packet,true,true> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = ei_conj(data1[i]) * ei_conj(data2[i]); VERIFY(ei_isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper"); } ei_pstore(pval,pcj.pmul(ei_pload<Packet>(data1),ei_pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper"); } } void test_packetmath() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( packetmath<float>() ); CALL_SUBTEST_2( packetmath<double>() ); CALL_SUBTEST_3( packetmath<int>() ); CALL_SUBTEST_1( packetmath<std::complex<float> >() ); CALL_SUBTEST_2( packetmath<std::complex<double> >() ); CALL_SUBTEST_1( packetmath_real<float>() ); CALL_SUBTEST_2( packetmath_real<double>() ); CALL_SUBTEST_1( packetmath_complex<std::complex<float> >() ); CALL_SUBTEST_2( packetmath_complex<std::complex<double> >() ); } }