// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "sparse.h" #include "AnnoyingScalar.h" template std::enable_if_t<(T::Flags & RowMajorBit) == RowMajorBit, typename T::RowXpr> innervec(T& A, Index i) { return A.row(i); } template std::enable_if_t<(T::Flags & RowMajorBit) == 0, typename T::ColXpr> innervec(T& A, Index i) { return A.col(i); } template void sparse_block(const SparseMatrixType& ref) { const Index rows = ref.rows(); const Index cols = ref.cols(); const Index inner = ref.innerSize(); const Index outer = ref.outerSize(); typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::RealScalar RealScalar; typedef typename SparseMatrixType::StorageIndex StorageIndex; double density = (std::max)(8. / (rows * cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; typedef Matrix RowDenseVector; typedef SparseVector SparseVectorType; Scalar s1 = internal::random(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); initSparse(density, refMat, m); VERIFY_IS_APPROX(m, refMat); // test InnerIterators and Block expressions for (int t = 0; t < 10; ++t) { Index j = internal::random(0, cols - 2); Index i = internal::random(0, rows - 2); Index w = internal::random(1, cols - j); Index h = internal::random(1, rows - i); VERIFY_IS_APPROX(m.block(i, j, h, w), refMat.block(i, j, h, w)); for (Index c = 0; c < w; c++) { VERIFY_IS_APPROX(m.block(i, j, h, w).col(c), refMat.block(i, j, h, w).col(c)); for (Index r = 0; r < h; r++) { VERIFY_IS_APPROX(m.block(i, j, h, w).col(c).coeff(r), refMat.block(i, j, h, w).col(c).coeff(r)); VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c)); } } for (Index r = 0; r < h; r++) { VERIFY_IS_APPROX(m.block(i, j, h, w).row(r), refMat.block(i, j, h, w).row(r)); for (Index c = 0; c < w; c++) { VERIFY_IS_APPROX(m.block(i, j, h, w).row(r).coeff(c), refMat.block(i, j, h, w).row(r).coeff(c)); VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c)); } } VERIFY_IS_APPROX(m.middleCols(j, w), refMat.middleCols(j, w)); VERIFY_IS_APPROX(m.middleRows(i, h), refMat.middleRows(i, h)); for (Index r = 0; r < h; r++) { VERIFY_IS_APPROX(m.middleCols(j, w).row(r), refMat.middleCols(j, w).row(r)); VERIFY_IS_APPROX(m.middleRows(i, h).row(r), refMat.middleRows(i, h).row(r)); for (Index c = 0; c < w; c++) { VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); VERIFY_IS_APPROX(m.middleCols(j, w).coeff(r, c), refMat.middleCols(j, w).coeff(r, c)); VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c)); if (!numext::is_exactly_zero(m.middleCols(j, w).coeff(r, c))) { VERIFY_IS_APPROX(m.middleCols(j, w).coeffRef(r, c), refMat.middleCols(j, w).coeff(r, c)); } if (!numext::is_exactly_zero(m.middleRows(i, h).coeff(r, c))) { VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c)); } } } for (Index c = 0; c < w; c++) { VERIFY_IS_APPROX(m.middleCols(j, w).col(c), refMat.middleCols(j, w).col(c)); VERIFY_IS_APPROX(m.middleRows(i, h).col(c), refMat.middleRows(i, h).col(c)); } } for (Index c = 0; c < cols; c++) { VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); } for (Index r = 0; r < rows; r++) { VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); } } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); Index j0 = internal::random(0, outer - 1); Index j1 = internal::random(0, outer - 1); Index r0 = internal::random(0, rows - 1); Index c0 = internal::random(0, cols - 1); VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2, j0)); VERIFY_IS_APPROX(m2.innerVector(j0) + m2.innerVector(j1), innervec(refMat2, j0) + innervec(refMat2, j1)); m2.innerVector(j0) *= Scalar(2); innervec(refMat2, j0) *= Scalar(2); VERIFY_IS_APPROX(m2, refMat2); m2.row(r0) *= Scalar(3); refMat2.row(r0) *= Scalar(3); VERIFY_IS_APPROX(m2, refMat2); m2.col(c0) *= Scalar(4); refMat2.col(c0) *= Scalar(4); VERIFY_IS_APPROX(m2, refMat2); m2.row(r0) /= Scalar(3); refMat2.row(r0) /= Scalar(3); VERIFY_IS_APPROX(m2, refMat2); m2.col(c0) /= Scalar(4); refMat2.col(c0) /= Scalar(4); VERIFY_IS_APPROX(m2, refMat2); SparseVectorType v1; VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0) * 4); VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose() * 4); SparseMatrixType m3(rows, cols); m3.reserve(VectorXi::Constant(outer, int(inner / 2))); for (Index j = 0; j < outer; ++j) for (Index k = 0; k < (std::min)(j, inner); ++k) m3.insertByOuterInner(j, k) = internal::convert_index(k + 1); for (Index j = 0; j < (std::min)(outer, inner); ++j) { VERIFY(j == numext::real(m3.innerVector(j).nonZeros())); if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff())); } m3.makeCompressed(); for (Index j = 0; j < (std::min)(outer, inner); ++j) { VERIFY(j == numext::real(m3.innerVector(j).nonZeros())); if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff())); } VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); // m2.innerVector(j0) = 2*m2.innerVector(j1); // refMat2.col(j0) = 2*refMat2.col(j1); // VERIFY_IS_APPROX(m2, refMat2); } // test innerVectors() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); if (internal::random(0, 1) > 0.5f) m2.makeCompressed(); Index j0 = internal::random(0, outer - 2); Index j1 = internal::random(0, outer - 2); Index n0 = internal::random(1, outer - (std::max)(j0, j1)); if (SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(j0, 0, n0, cols)); else VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(0, j0, rows, n0)); if (SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0), refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)); else VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0), refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0)); VERIFY_IS_APPROX(m2, refMat2); VERIFY(m2.innerVectors(j0, n0).nonZeros() == m2.transpose().innerVectors(j0, n0).nonZeros()); m2.innerVectors(j0, n0) = m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0); if (SparseMatrixType::IsRowMajor) refMat2.middleRows(j0, n0) = (refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)).eval(); else refMat2.middleCols(j0, n0) = (refMat2.middleCols(j0, n0) + refMat2.middleCols(j1, n0)).eval(); VERIFY_IS_APPROX(m2, refMat2); } // test generic blocks { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); Index j0 = internal::random(0, outer - 2); Index j1 = internal::random(0, outer - 2); Index n0 = internal::random(1, outer - (std::max)(j0, j1)); if (SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols), refMat2.block(j0, 0, n0, cols)); else VERIFY_IS_APPROX(m2.block(0, j0, rows, n0), refMat2.block(0, j0, rows, n0)); if (SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols) + m2.block(j1, 0, n0, cols), refMat2.block(j0, 0, n0, cols) + refMat2.block(j1, 0, n0, cols)); else VERIFY_IS_APPROX(m2.block(0, j0, rows, n0) + m2.block(0, j1, rows, n0), refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0)); Index i = internal::random(0, m2.outerSize() - 1); if (SparseMatrixType::IsRowMajor) { m2.innerVector(i) = m2.innerVector(i) * s1; refMat2.row(i) = refMat2.row(i) * s1; VERIFY_IS_APPROX(m2, refMat2); } else { m2.innerVector(i) = m2.innerVector(i) * s1; refMat2.col(i) = refMat2.col(i) * s1; VERIFY_IS_APPROX(m2, refMat2); } Index r0 = internal::random(0, rows - 2); Index c0 = internal::random(0, cols - 2); Index r1 = internal::random(1, rows - r0); Index c1 = internal::random(1, cols - c0); VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); VERIFY_IS_APPROX(m2.block(r0, c0, r1, c1), refMat2.block(r0, c0, r1, c1)); VERIFY_IS_APPROX((2 * m2).block(r0, c0, r1, c1), (2 * refMat2).block(r0, c0, r1, c1)); if (m2.nonZeros() > 0) { VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(rows, cols); DenseMatrix refMat3(rows, cols); refMat3.setZero(); Index n = internal::random(1, 10); for (Index k = 0; k < n; ++k) { Index o1 = internal::random(0, outer - 1); Index o2 = internal::random(0, outer - 1); if (SparseMatrixType::IsRowMajor) { m3.innerVector(o1) = m2.row(o2); refMat3.row(o1) = refMat2.row(o2); } else { m3.innerVector(o1) = m2.col(o2); refMat3.col(o1) = refMat2.col(o2); } if (internal::random()) m3.makeCompressed(); } if (m3.nonZeros() > 0) VERIFY_IS_APPROX(m3, refMat3); } } // Explicit inner iterator. { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); Index j0 = internal::random(0, outer - 1); auto v = innervec(m2, j0); typename decltype(v)::InnerIterator block_iterator(v); typename SparseMatrixType::InnerIterator matrix_iterator(m2, j0); while (block_iterator) { VERIFY_IS_EQUAL(block_iterator.index(), matrix_iterator.index()); ++block_iterator; ++matrix_iterator; } } } EIGEN_DECLARE_TEST(sparse_block) { for (int i = 0; i < g_repeat; i++) { int r = Eigen::internal::random(1, 200), c = Eigen::internal::random(1, 200); if (Eigen::internal::random(0, 4) == 0) { r = c; // check square matrices in 25% of tries } EIGEN_UNUSED_VARIABLE(r + c); CALL_SUBTEST_1((sparse_block(SparseMatrix(1, 1)))); CALL_SUBTEST_1((sparse_block(SparseMatrix(8, 8)))); CALL_SUBTEST_1((sparse_block(SparseMatrix(r, c)))); CALL_SUBTEST_2((sparse_block(SparseMatrix, ColMajor>(r, c)))); CALL_SUBTEST_2((sparse_block(SparseMatrix, RowMajor>(r, c)))); CALL_SUBTEST_3((sparse_block(SparseMatrix(r, c)))); CALL_SUBTEST_3((sparse_block(SparseMatrix(r, c)))); r = Eigen::internal::random(1, 100); c = Eigen::internal::random(1, 100); if (Eigen::internal::random(0, 4) == 0) { r = c; // check square matrices in 25% of tries } CALL_SUBTEST_4((sparse_block(SparseMatrix(short(r), short(c))))); CALL_SUBTEST_4((sparse_block(SparseMatrix(short(r), short(c))))); #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW AnnoyingScalar::dont_throw = true; #endif CALL_SUBTEST_5((sparse_block(SparseMatrix(r, c)))); } }