namespace Eigen { /** \page TutorialArrayClass Tutorial page 3 - The Array Class \ingroup Tutorial \li \b Previous: \ref TutorialMatrixArithmetic \li \b Next: (not yet written) This tutorial aims to provide an overview and explanations on how to use Eigen's \b Array class \b Table \b of \b contents - \ref TutorialArrayClassWhatIs - \ref TutorialArrayClassTypes - \ref TutorialArrayClassAccess - \ref TutorialArrayClassCoeffWiseExamples - \ref TutorialArrayHowToUse - \ref TutorialArrayClassCoeffWiseOperators \section TutorialArrayClassWhatIs What is the Array class? The \b Array class is provided by Eigen in order to perform coefficient-wise operations on matrices. As menioned in the previous section FIXME:link, only linear algebra operations are supported between matrices and vectors. The \b Array class provides a useful abstraction layer that allows the developer to perform a wide range of advanced operations on a matrix, such as coefficient-wise addition, division and multiplication. \subsection TutorialArrayClassTypes Array type and predefined types The \b Array class is actually a template that works in a similar way as the \b Matrix one: \code //declaring an Array instance Array a; \endcode Eigen provides a bunch of predefined types to make instantiation easier. These types follow the same conventions as the ones available for the \b Matrix ones but with some slight differences, as shown in the following table: FIXME: explain why these differences-
\b Type\b Typedef
\code Array \endcode \code ArrayXXd \endcode
\code Array \endcode \code Array33d \endcode
\code Array \endcode \code ArrayXXf \endcode
\code Array \endcode \code Array33f \endcode
\subsection TutorialArrayClassAccess Accessing values inside \b Array Write and read-access to coefficients inside \b Array is done in the same way as with \b Matrix. Here some examples are presented, just for clarification: \code ArrayXXf m(2,2); //assign some values coefficient by coefficient m(0,0) = 1.0; m(0,1) = 2.0; m(1,0) = 3.0; m(1,1) = 4.0; //print values to standard output std::cout << m << std::endl; // using the comma-initializer is also allowed m << 1.0,2.0, 3.0,4.0; \endcode \subsection TutorialArrayClassCoeffWiseExamples Simple coefficient-wise operations As said before, the \b Array class looks at operators from a coefficient-wise perspective. This makes an important difference with respect to \b Matrix algebraic operations, especially with the product operator. The following example performs coefficient-wise multiplication between two \b Array instances: \code ArrayXXf m(4,4); ArrayXXf n(4,4); ArrayXXf result; // after this operation is executed, result(i,j) = m(i,j) * n(i,j) for every position result = m * n; \endcode Another example has to do with coefficient-wise addition: \code ArrayXXf m(4,4); ArrayXXf result; // after this operation is executed, result(i,j) = m(i,j) + 4 result = m + 4; \endcode \section TutorialArrayHowToUse Using arrays and matrices It is possible to treat the data inside a \b Matrix object as an \b Array and vice-versa. This allows the developer to perform a wide diversity of operators regardless of the actual type where the coefficients rely on. The \b Matrix class provides a \p .array() method that 'converts' it into an \b Array type, so that coefficient-wise operations can be applied easily. On the other side, the \b Array class provides a \p .matrix() method. FIXME: note on overhead An example using this 'interoperability' is presented below: \code MatrixXf m(4,4); MatrixXf n(4,4); MatrixXf x(4,4); MatrixXf result; //matrix multiplication (non coefficient-wise) result = m * n; //coefficient-wise multiplication result = m.array() * n.array(); // --- More complex example --- // This will perform coefficient-wise multiplication between m and n // to later compute a matrix multiplication between that result and matrix x result = (m.array() * n.array()).matrix() * x; \endcode \b NOTE: there is no need to call \p .matrix() to assign a \b Array type to a \b Matrix or vice-versa. \section TutorialArrayClassCoeffWiseOperators Array coefficient-wise operators
Coefficient wise \link ArrayBase::operator*() product \arrayworld \endlink \code array3 = array1 * array2; \endcode
Add a scalar to all coefficients\code array3 = array1 + scalar; array3 += scalar; array3 -= scalar; \endcode
Coefficient wise \link ArrayBase::operator/() division \endlink \arrayworld\code array3 = array1 / array2; \endcode
Coefficient wise \link ArrayBase::inverse() reciprocal \endlink \arrayworld\code array3 = array1.inverse(); \endcode
Coefficient wise comparisons \arrayworld \n (support all operators)\code array3 = array1 < array2; array3 = array1 <= array2; array3 = array1 > array2; etc. \endcode
\b Trigo \arrayworld: \n \link ArrayBase::sin sin \endlink, \link ArrayBase::cos cos \endlink\code array3 = array1.sin(); etc. \endcode
\b Power \arrayworld: \n \link ArrayBase::pow() pow \endlink, \link ArrayBase::square square \endlink, \link ArrayBase::cube cube \endlink, \n \link ArrayBase::sqrt sqrt \endlink, \link ArrayBase::exp exp \endlink, \link ArrayBase::log log \endlink \code array3 = array1.square(); array3 = array1.pow(5); array3 = array1.log(); etc. \endcode
\link ArrayBase::min min \endlink, \link ArrayBase::max max \endlink, \n absolute value (\link ArrayBase::abs() abs \endlink, \link ArrayBase::abs2() abs2 \endlink \arrayworld) \code array3 = array1.min(array2); array3 = array1.max(array2); array3 = array1.abs(); array3 = array1.abs2(); \endcode
**/ }