// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::Tensor; using Eigen::RowMajor; using Scalar = float; using TypedLTOp = internal::scalar_cmp_op; using TypedLEOp = internal::scalar_cmp_op; using TypedGTOp = internal::scalar_cmp_op; using TypedGEOp = internal::scalar_cmp_op; using TypedEQOp = internal::scalar_cmp_op; using TypedNEOp = internal::scalar_cmp_op; static void test_orderings() { Tensor mat1(2,3,7); Tensor mat2(2,3,7); mat1.setRandom(); mat2.setRandom(); Tensor lt(2,3,7); Tensor le(2,3,7); Tensor gt(2,3,7); Tensor ge(2,3,7); Tensor typed_lt(2, 3, 7); Tensor typed_le(2, 3, 7); Tensor typed_gt(2, 3, 7); Tensor typed_ge(2, 3, 7); lt = mat1 < mat2; le = mat1 <= mat2; gt = mat1 > mat2; ge = mat1 >= mat2; typed_lt = mat1.binaryExpr(mat2, TypedLTOp()); typed_le = mat1.binaryExpr(mat2, TypedLEOp()); typed_gt = mat1.binaryExpr(mat2, TypedGTOp()); typed_ge = mat1.binaryExpr(mat2, TypedGEOp()); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(lt(i,j,k), mat1(i,j,k) < mat2(i,j,k)); VERIFY_IS_EQUAL(le(i,j,k), mat1(i,j,k) <= mat2(i,j,k)); VERIFY_IS_EQUAL(gt(i,j,k), mat1(i,j,k) > mat2(i,j,k)); VERIFY_IS_EQUAL(ge(i,j,k), mat1(i,j,k) >= mat2(i,j,k)); VERIFY_IS_EQUAL(lt(i, j, k), (bool)typed_lt(i, j, k)); VERIFY_IS_EQUAL(le(i, j, k), (bool)typed_le(i, j, k)); VERIFY_IS_EQUAL(gt(i, j, k), (bool)typed_gt(i, j, k)); VERIFY_IS_EQUAL(ge(i, j, k), (bool)typed_ge(i, j, k)); } } } } static void test_equality() { Tensor mat1(2,3,7); Tensor mat2(2,3,7); mat1.setRandom(); mat2.setRandom(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { if (internal::random()) { mat2(i,j,k) = mat1(i,j,k); } } } } Tensor eq(2,3,7); Tensor ne(2,3,7); Tensor typed_eq(2, 3, 7); Tensor typed_ne(2, 3, 7); eq = (mat1 == mat2); ne = (mat1 != mat2); typed_eq = mat1.binaryExpr(mat2, TypedEQOp()); typed_ne = mat1.binaryExpr(mat2, TypedNEOp()); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(eq(i,j,k), mat1(i,j,k) == mat2(i,j,k)); VERIFY_IS_EQUAL(ne(i,j,k), mat1(i,j,k) != mat2(i,j,k)); VERIFY_IS_EQUAL(eq(i, j, k), (bool)typed_eq(i,j,k)); VERIFY_IS_EQUAL(ne(i, j, k), (bool)typed_ne(i,j,k)); } } } } static void test_isnan() { Tensor mat(2,3,7); mat.setRandom(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { if (internal::random()) { mat(i,j,k) = std::numeric_limits::quiet_NaN(); } } } } Tensor nan(2,3,7); nan = (mat.isnan)(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(nan(i,j,k), (std::isnan)(mat(i,j,k))); } } } } EIGEN_DECLARE_TEST(cxx11_tensor_comparisons) { CALL_SUBTEST(test_orderings()); CALL_SUBTEST(test_equality()); CALL_SUBTEST(test_isnan()); }