// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DIAGONALMATRIX_H #define EIGEN_DIAGONALMATRIX_H /** \class DiagonalMatrix * * \brief Expression of a diagonal matrix * * \param CoeffsVectorType the type of the vector of diagonal coefficients * * This class is an expression of a diagonal matrix with given vector of diagonal * coefficients. It is the return * type of MatrixBase::diagonal(const OtherDerived&) and most of the time this is * the only way it is used. * * \sa MatrixBase::diagonal(const OtherDerived&) */ template class DiagonalMatrix : NoOperatorEquals, public MatrixBase > { public: typedef typename CoeffsVectorType::Scalar Scalar; typedef typename CoeffsVectorType::AsArg CoeffsVecRef; friend class MatrixBase; friend class MatrixBase::Traits; typedef MatrixBase Base; DiagonalMatrix(const CoeffsVecRef& coeffs) : m_coeffs(coeffs) { assert(CoeffsVectorType::Traits::IsVectorAtCompileTime && coeffs.size() > 0); } private: enum { RowsAtCompileTime = CoeffsVectorType::Traits::SizeAtCompileTime, ColsAtCompileTime = CoeffsVectorType::Traits::SizeAtCompileTime, MaxRowsAtCompileTime = CoeffsVectorType::Traits::MaxSizeAtCompileTime, MaxColsAtCompileTime = CoeffsVectorType::Traits::MaxSizeAtCompileTime }; const DiagonalMatrix& _asArg() const { return *this; } int _rows() const { return m_coeffs.size(); } int _cols() const { return m_coeffs.size(); } Scalar _coeff(int row, int col) const { return row == col ? m_coeffs.coeff(row) : static_cast(0); } protected: const CoeffsVecRef m_coeffs; }; /** \returns an expression of a diagonal matrix with *this as vector of diagonal coefficients * * \only_for_vectors * * Example: \include MatrixBase_asDiagonal.cpp * Output: \verbinclude MatrixBase_asDiagonal.out * * \sa class DiagonalMatrix, isDiagonal() **/ template const DiagonalMatrix MatrixBase::asDiagonal() const { return DiagonalMatrix(asArg()); } /** \returns true if *this is approximately equal to a diagonal matrix, * within the precision given by \a prec. * * Example: \include MatrixBase_isDiagonal.cpp * Output: \verbinclude MatrixBase_isDiagonal.out * * \sa asDiagonal() */ template bool MatrixBase::isDiagonal (typename NumTraits::Real prec) const { if(cols() != rows()) return false; RealScalar maxAbsOnDiagonal = static_cast(-1); for(int j = 0; j < cols(); j++) { RealScalar absOnDiagonal = ei_abs(coeff(j,j)); if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; } for(int j = 0; j < cols(); j++) for(int i = 0; i < j; i++) { if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false; if(!ei_isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false; } return true; } #endif // EIGEN_DIAGONALMATRIX_H