// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #include "main.h" #include #include #include "solverbase.h" template typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { if (m.cols() == 0) return typename MatrixType::RealScalar(0); MatrixType symm = m.template selfadjointView(); return symm.cwiseAbs().colwise().sum().maxCoeff(); } template class CholType> void test_chol_update(const MatrixType& symm) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix VectorType; MatrixType symmLo = symm.template triangularView(); MatrixType symmUp = symm.template triangularView(); MatrixType symmCpy = symm; CholType chollo(symmLo); CholType cholup(symmUp); for (int k = 0; k < 10; ++k) { VectorType vec = VectorType::Random(symm.rows()); RealScalar sigma = internal::random(); symmCpy += sigma * vec * vec.adjoint(); // we are doing some downdates, so it might be the case that the matrix is not SPD anymore CholType chol(symmCpy); if (chol.info() != Success) break; chollo.rankUpdate(vec, sigma); VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix()); cholup.rankUpdate(vec, sigma); VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix()); } } template void cholesky(const MatrixType& m) { /* this test covers the following files: LLT.h LDLT.h */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix SquareMatrixType; typedef Matrix VectorType; MatrixType a0 = MatrixType::Random(rows, cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); SquareMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular for (int k = 0; k < 3; ++k) { MatrixType a1 = MatrixType::Random(rows, cols); symm += a1 * a1.adjoint(); } { STATIC_CHECK((internal::is_same::StorageIndex, int>::value)); STATIC_CHECK((internal::is_same::StorageIndex, int>::value)); SquareMatrixType symmUp = symm.template triangularView(); SquareMatrixType symmLo = symm.template triangularView(); LLT chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); check_solverbase(symm, chollo, rows, rows, 1); check_solverbase(symm, chollo, rows, cols, rows); const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows, cols)); RealScalar rcond = (RealScalar(1) / matrix_l1_norm(symmLo)) / matrix_l1_norm(symmLo_inverse); RealScalar rcond_est = chollo.rcond(); // Verify that the estimated condition number is within a factor of 10 of the // truth. VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); // test the upper mode LLT cholup(symmUp); VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); vecX = cholup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = cholup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); // Verify that the estimated condition number is within a factor of 10 of the // truth. const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows, cols)); rcond = (RealScalar(1) / matrix_l1_norm(symmUp)) / matrix_l1_norm(symmUp_inverse); rcond_est = cholup.rcond(); VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); MatrixType neg = -symmLo; chollo.compute(neg); VERIFY(neg.size() == 0 || chollo.info() == NumericalIssue); VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU())); VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); // test some special use cases of SelfCwiseBinaryOp: MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols); m2 = m1; m2 += symmLo.template selfadjointView().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView().llt().solve(matB)); m2 = m1; m2 -= symmLo.template selfadjointView().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView().llt().solve(matB)); m2 = m1; m2.noalias() += symmLo.template selfadjointView().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView().llt().solve(matB)); m2 = m1; m2.noalias() -= symmLo.template selfadjointView().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView().llt().solve(matB)); } // LDLT { STATIC_CHECK((internal::is_same::StorageIndex, int>::value)); STATIC_CHECK((internal::is_same::StorageIndex, int>::value)); int sign = internal::random() % 2 ? 1 : -1; if (sign == -1) { symm = -symm; // test a negative matrix } SquareMatrixType symmUp = symm.template triangularView(); SquareMatrixType symmLo = symm.template triangularView(); LDLT ldltlo(symmLo); VERIFY(ldltlo.info() == Success); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); check_solverbase(symm, ldltlo, rows, rows, 1); check_solverbase(symm, ldltlo, rows, cols, rows); const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows, cols)); RealScalar rcond = (RealScalar(1) / matrix_l1_norm(symmLo)) / matrix_l1_norm(symmLo_inverse); RealScalar rcond_est = ldltlo.rcond(); // Verify that the estimated condition number is within a factor of 10 of the // truth. VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); LDLT ldltup(symmUp); VERIFY(ldltup.info() == Success); VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); vecX = ldltup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); // Verify that the estimated condition number is within a factor of 10 of the // truth. const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows, cols)); rcond = (RealScalar(1) / matrix_l1_norm(symmUp)) / matrix_l1_norm(symmUp_inverse); rcond_est = ldltup.rcond(); VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL())); if (MatrixType::RowsAtCompileTime == Dynamic) { // note : each inplace permutation requires a small temporary vector (mask) // check inplace solve matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval()); matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); } // restore if (sign == -1) symm = -symm; // check matrices coming from linear constraints with Lagrange multipliers if (rows >= 3) { SquareMatrixType A = symm; Index c = internal::random(0, rows - 2); A.bottomRightCorner(c, c).setZero(); // Make sure a solution exists: vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } // check non-full rank matrices if (rows >= 3) { Index r = internal::random(1, rows - 1); Matrix a = Matrix::Random(rows, r); SquareMatrixType A = a * a.adjoint(); // Make sure a solution exists: vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } // check matrices with a wide spectrum if (rows >= 3) { using std::pow; using std::sqrt; RealScalar s = (std::min)(16, std::numeric_limits::max_exponent10 / 8); Matrix a = Matrix::Random(rows, rows); Matrix d = Matrix::Random(rows); for (Index k = 0; k < rows; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random(-s, s)); SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); // Make sure a solution exists: vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); if (ldltlo.vectorD().real().cwiseAbs().minCoeff() > RealScalar(0)) { VERIFY_IS_APPROX(A * vecX, vecB); } else { RealScalar large_tol = sqrt(test_precision()); VERIFY((A * vecX).isApprox(vecB, large_tol)); ++g_test_level; VERIFY_IS_APPROX(A * vecX, vecB); --g_test_level; } } } // update/downdate CALL_SUBTEST((test_chol_update(symm))); CALL_SUBTEST((test_chol_update(symm))); } template void cholesky_cplx(const MatrixType& m) { // classic test cholesky(m); // test mixing real/scalar types Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix RealMatrixType; typedef Matrix VectorType; RealMatrixType a0 = RealMatrixType::Random(rows, cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); RealMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular for (int k = 0; k < 3; ++k) { RealMatrixType a1 = RealMatrixType::Random(rows, cols); symm += a1 * a1.adjoint(); } { RealMatrixType symmLo = symm.template triangularView(); LLT chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); check_solverbase(symm, chollo, rows, rows, 1); // check_solverbase(symm, chollo, rows, cols, rows); } // LDLT { int sign = internal::random() % 2 ? 1 : -1; if (sign == -1) { symm = -symm; // test a negative matrix } RealMatrixType symmLo = symm.template triangularView(); LDLT ldltlo(symmLo); VERIFY(ldltlo.info() == Success); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); check_solverbase(symm, ldltlo, rows, rows, 1); // check_solverbase(symm, ldltlo, rows, cols, rows); } } // regression test for bug 241 template void cholesky_bug241(const MatrixType& m) { eigen_assert(m.rows() == 2 && m.cols() == 2); typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; MatrixType matA; matA << 1, 1, 1, 1; VectorType vecB; vecB << 1, 1; VectorType vecX = matA.ldlt().solve(vecB); VERIFY_IS_APPROX(matA * vecX, vecB); } // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal. // This test checks that LDLT reports correctly that matrix is indefinite. // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736 template void cholesky_definiteness(const MatrixType& m) { eigen_assert(m.rows() == 2 && m.cols() == 2); MatrixType mat; LDLT ldlt(2); { mat << 1, 0, 0, -1; ldlt.compute(mat); VERIFY(ldlt.info() == Success); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); } { mat << 1, 2, 2, 1; ldlt.compute(mat); VERIFY(ldlt.info() == Success); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); } { mat << 0, 0, 0, 0; ldlt.compute(mat); VERIFY(ldlt.info() == Success); VERIFY(ldlt.isNegative()); VERIFY(ldlt.isPositive()); VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); } { mat << 0, 0, 0, 1; ldlt.compute(mat); VERIFY(ldlt.info() == Success); VERIFY(!ldlt.isNegative()); VERIFY(ldlt.isPositive()); VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); } { mat << -1, 0, 0, 0; ldlt.compute(mat); VERIFY(ldlt.info() == Success); VERIFY(ldlt.isNegative()); VERIFY(!ldlt.isPositive()); VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); } } template void cholesky_faillure_cases() { MatrixXd mat; LDLT ldlt; { mat.resize(2, 2); mat << 0, 1, 1, 0; ldlt.compute(mat); VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); VERIFY(ldlt.info() == NumericalIssue); } #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2) { mat.resize(3, 3); mat << -1, -3, 3, -3, -8.9999999999999999999, 1, 3, 1, 0; ldlt.compute(mat); VERIFY(ldlt.info() == NumericalIssue); VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); } #endif { mat.resize(3, 3); mat << 1, 2, 3, 2, 4, 1, 3, 1, 0; ldlt.compute(mat); VERIFY(ldlt.info() == NumericalIssue); VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); } { mat.resize(8, 8); mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0, 0, 4.24667, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.2, 0, -0.1, 0, 0, 0, 0, 2.00333, 0, 8.49333, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.1, 0, 0, 1, 0, 0, 0, 2.00333, 0, 4.24667, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; ldlt.compute(mat); VERIFY(ldlt.info() == NumericalIssue); VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); } // bug 1479 { mat.resize(4, 4); mat << 1, 2, 0, 1, 2, 4, 0, 2, 0, 0, 0, 1, 1, 2, 1, 1; ldlt.compute(mat); VERIFY(ldlt.info() == NumericalIssue); VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); } } template void cholesky_verify_assert() { MatrixType tmp; LLT llt; VERIFY_RAISES_ASSERT(llt.matrixL()) VERIFY_RAISES_ASSERT(llt.matrixU()) VERIFY_RAISES_ASSERT(llt.solve(tmp)) VERIFY_RAISES_ASSERT(llt.transpose().solve(tmp)) VERIFY_RAISES_ASSERT(llt.adjoint().solve(tmp)) VERIFY_RAISES_ASSERT(llt.solveInPlace(tmp)) LDLT ldlt; VERIFY_RAISES_ASSERT(ldlt.matrixL()) VERIFY_RAISES_ASSERT(ldlt.transpositionsP()) VERIFY_RAISES_ASSERT(ldlt.vectorD()) VERIFY_RAISES_ASSERT(ldlt.isPositive()) VERIFY_RAISES_ASSERT(ldlt.isNegative()) VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) VERIFY_RAISES_ASSERT(ldlt.transpose().solve(tmp)) VERIFY_RAISES_ASSERT(ldlt.adjoint().solve(tmp)) VERIFY_RAISES_ASSERT(ldlt.solveInPlace(tmp)) } EIGEN_DECLARE_TEST(cholesky) { int s = 0; for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(cholesky(Matrix())); CALL_SUBTEST_3(cholesky(Matrix2d())); CALL_SUBTEST_3(cholesky_bug241(Matrix2d())); CALL_SUBTEST_3(cholesky_definiteness(Matrix2d())); CALL_SUBTEST_4(cholesky(Matrix3f())); CALL_SUBTEST_5(cholesky(Matrix4d())); s = internal::random(1, EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_2(cholesky(MatrixXd(s, s))); TEST_SET_BUT_UNUSED_VARIABLE(s) s = internal::random(1, EIGEN_TEST_MAX_SIZE / 2); CALL_SUBTEST_6(cholesky_cplx(MatrixXcd(s, s))); TEST_SET_BUT_UNUSED_VARIABLE(s) } // empty matrix, regression test for Bug 785: CALL_SUBTEST_2(cholesky(MatrixXd(0, 0))); // This does not work yet: // CALL_SUBTEST_2( cholesky(Matrix()) ); CALL_SUBTEST_4(cholesky_verify_assert()); CALL_SUBTEST_7(cholesky_verify_assert()); CALL_SUBTEST_8(cholesky_verify_assert()); CALL_SUBTEST_2(cholesky_verify_assert()); // Test problem size constructors CALL_SUBTEST_9(LLT(10)); CALL_SUBTEST_9(LDLT(10)); CALL_SUBTEST_2(cholesky_faillure_cases()); TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) }