mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 06:39:37 +08:00
140 lines
5.3 KiB
C++
140 lines
5.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_RUNTIME_NO_MALLOC
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/Eigenvalues>
|
|
#include <Eigen/LU>
|
|
|
|
template <typename MatrixType>
|
|
void generalized_eigensolver_real(const MatrixType& m) {
|
|
/* this test covers the following files:
|
|
GeneralizedEigenSolver.h
|
|
*/
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef std::complex<Scalar> ComplexScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType a = MatrixType::Random(rows, cols);
|
|
MatrixType b = MatrixType::Random(rows, cols);
|
|
MatrixType a1 = MatrixType::Random(rows, cols);
|
|
MatrixType b1 = MatrixType::Random(rows, cols);
|
|
MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1;
|
|
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
|
|
|
|
// lets compare to GeneralizedSelfAdjointEigenSolver
|
|
{
|
|
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
|
|
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
|
|
|
|
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
|
|
|
|
VectorType realEigenvalues = eig.eigenvalues().real();
|
|
std::sort(realEigenvalues.data(), realEigenvalues.data() + realEigenvalues.size());
|
|
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
|
|
|
|
// check eigenvectors
|
|
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
|
|
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
|
|
VERIFY_IS_APPROX(spdA * V, spdB * V * D);
|
|
}
|
|
|
|
// non symmetric case:
|
|
{
|
|
GeneralizedEigenSolver<MatrixType> eig(rows);
|
|
// TODO enable full-prealocation of required memory, this probably requires an in-place mode for
|
|
// HessenbergDecomposition
|
|
// Eigen::internal::set_is_malloc_allowed(false);
|
|
eig.compute(a, b);
|
|
// Eigen::internal::set_is_malloc_allowed(true);
|
|
for (Index k = 0; k < cols; ++k) {
|
|
Matrix<ComplexScalar, Dynamic, Dynamic> tmp =
|
|
(eig.betas()(k) * a).template cast<ComplexScalar>() - eig.alphas()(k) * b;
|
|
if (tmp.size() > 1 && tmp.norm() > (std::numeric_limits<Scalar>::min)()) tmp /= tmp.norm();
|
|
VERIFY_IS_MUCH_SMALLER_THAN(std::abs(tmp.determinant()), Scalar(1));
|
|
}
|
|
// check eigenvectors
|
|
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
|
|
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
|
|
VERIFY_IS_APPROX(a * V, b * V * D);
|
|
}
|
|
|
|
// regression test for bug 1098
|
|
{
|
|
GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a, b.adjoint() * b);
|
|
eig1.compute(a.adjoint() * a, b.adjoint() * b);
|
|
GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a, b.adjoint() * b);
|
|
eig2.compute(a.adjoint() * a, b.adjoint() * b);
|
|
}
|
|
|
|
// check without eigenvectors
|
|
{
|
|
GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true);
|
|
GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false);
|
|
VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
|
|
}
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void generalized_eigensolver_assert() {
|
|
GeneralizedEigenSolver<MatrixType> eig;
|
|
// all raise assert if uninitialized
|
|
VERIFY_RAISES_ASSERT(eig.info());
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
|
VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
|
VERIFY_RAISES_ASSERT(eig.alphas());
|
|
VERIFY_RAISES_ASSERT(eig.betas());
|
|
|
|
// none raise assert after compute called
|
|
eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
|
|
VERIFY(eig.info() == Success);
|
|
eig.eigenvectors();
|
|
eig.eigenvalues();
|
|
eig.alphas();
|
|
eig.betas();
|
|
|
|
// eigenvectors() raises assert, if eigenvectors were not requested
|
|
eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20), false);
|
|
VERIFY(eig.info() == Success);
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
|
eig.eigenvalues();
|
|
eig.alphas();
|
|
eig.betas();
|
|
|
|
// all except info raise assert if realQZ did not converge
|
|
eig.setMaxIterations(0); // force real QZ to fail.
|
|
eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
|
|
VERIFY(eig.info() == NoConvergence);
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
|
VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
|
VERIFY_RAISES_ASSERT(eig.alphas());
|
|
VERIFY_RAISES_ASSERT(eig.betas());
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(eigensolver_generalized_real) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
int s = 0;
|
|
CALL_SUBTEST_1(generalized_eigensolver_real(Matrix4f()));
|
|
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
|
|
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(s, s)));
|
|
|
|
// some trivial but implementation-wise special cases
|
|
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(1, 1)));
|
|
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(2, 2)));
|
|
CALL_SUBTEST_3(generalized_eigensolver_real(Matrix<double, 1, 1>()));
|
|
CALL_SUBTEST_4(generalized_eigensolver_real(Matrix2d()));
|
|
CALL_SUBTEST_5(generalized_eigensolver_assert<MatrixXd>());
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|
|
}
|