mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 06:39:37 +08:00
95 lines
3.1 KiB
C++
95 lines
3.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_RUNTIME_NO_MALLOC
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/Eigenvalues>
|
|
|
|
template <typename MatrixType>
|
|
void real_qz(const MatrixType& m) {
|
|
/* this test covers the following files:
|
|
RealQZ.h
|
|
*/
|
|
using std::abs;
|
|
|
|
Index dim = m.cols();
|
|
|
|
MatrixType A = MatrixType::Random(dim, dim), B = MatrixType::Random(dim, dim);
|
|
|
|
// Regression test for bug 985: Randomly set rows or columns to zero
|
|
Index k = internal::random<Index>(0, dim - 1);
|
|
switch (internal::random<int>(0, 10)) {
|
|
case 0:
|
|
A.row(k).setZero();
|
|
break;
|
|
case 1:
|
|
A.col(k).setZero();
|
|
break;
|
|
case 2:
|
|
B.row(k).setZero();
|
|
break;
|
|
case 3:
|
|
B.col(k).setZero();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
RealQZ<MatrixType> qz(dim);
|
|
// TODO enable full-prealocation of required memory, this probably requires an in-place mode for
|
|
// HessenbergDecomposition
|
|
// Eigen::internal::set_is_malloc_allowed(false);
|
|
qz.compute(A, B);
|
|
// Eigen::internal::set_is_malloc_allowed(true);
|
|
|
|
VERIFY_IS_EQUAL(qz.info(), Success);
|
|
// check for zeros
|
|
bool all_zeros = true;
|
|
for (Index i = 0; i < A.cols(); i++)
|
|
for (Index j = 0; j < i; j++) {
|
|
if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) {
|
|
std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i, j) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
if (j < i - 1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) {
|
|
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
if (j == i - 1 && j > 0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) &&
|
|
!numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) {
|
|
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << " && S(" << i - 1 << "," << j - 1
|
|
<< ") = " << qz.matrixS()(i - 1, j - 1) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
}
|
|
VERIFY_IS_EQUAL(all_zeros, true);
|
|
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A);
|
|
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B);
|
|
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim));
|
|
VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(real_qz) {
|
|
int s = 0;
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(real_qz(Matrix4f()));
|
|
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
|
|
CALL_SUBTEST_2(real_qz(MatrixXd(s, s)));
|
|
|
|
// some trivial but implementation-wise tricky cases
|
|
CALL_SUBTEST_2(real_qz(MatrixXd(1, 1)));
|
|
CALL_SUBTEST_2(real_qz(MatrixXd(2, 2)));
|
|
CALL_SUBTEST_3(real_qz(Matrix<double, 1, 1>()));
|
|
CALL_SUBTEST_4(real_qz(Matrix2d()));
|
|
}
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|