mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 06:39:37 +08:00
246 lines
11 KiB
C++
246 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
static long int nb_transposed_copies;
|
|
#define EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN \
|
|
{ nb_transposed_copies++; }
|
|
#define VERIFY_TRANSPOSITION_COUNT(XPR, N) \
|
|
{ \
|
|
nb_transposed_copies = 0; \
|
|
XPR; \
|
|
if (nb_transposed_copies != N) std::cerr << "nb_transposed_copies == " << nb_transposed_copies << "\n"; \
|
|
VERIFY((#XPR) && nb_transposed_copies == N); \
|
|
}
|
|
|
|
static long int nb_temporaries;
|
|
#define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \
|
|
{ nb_temporaries++; }
|
|
#define VERIFY_TEMPORARY_COUNT(XPR, N) \
|
|
{ \
|
|
nb_temporaries = 0; \
|
|
XPR; \
|
|
if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
|
|
VERIFY((#XPR) && nb_temporaries == N); \
|
|
}
|
|
|
|
#include "sparse.h"
|
|
|
|
template <typename T>
|
|
bool is_sorted(const T& mat) {
|
|
for (Index k = 0; k < mat.outerSize(); ++k) {
|
|
Index prev = -1;
|
|
for (typename T::InnerIterator it(mat, k); it; ++it) {
|
|
if (prev >= it.index()) return false;
|
|
prev = it.index();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
typename internal::nested_eval<T, 1>::type eval(const T& xpr) {
|
|
VERIFY(int(internal::nested_eval<T, 1>::type::Flags & RowMajorBit) ==
|
|
int(internal::evaluator<T>::Flags & RowMajorBit));
|
|
return xpr;
|
|
}
|
|
|
|
template <int OtherStorage, typename SparseMatrixType>
|
|
void sparse_permutations(const SparseMatrixType& ref) {
|
|
const Index rows = ref.rows();
|
|
const Index cols = ref.cols();
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
|
typedef SparseMatrix<Scalar, OtherStorage, StorageIndex> OtherSparseMatrixType;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
|
|
typedef Matrix<StorageIndex, Dynamic, 1> VectorI;
|
|
// bool IsRowMajor1 = SparseMatrixType::IsRowMajor;
|
|
// bool IsRowMajor2 = OtherSparseMatrixType::IsRowMajor;
|
|
|
|
double density = (std::max)(8. / static_cast<double>(rows * cols), 0.01);
|
|
|
|
SparseMatrixType mat(rows, cols), up(rows, cols), lo(rows, cols);
|
|
OtherSparseMatrixType res;
|
|
DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d;
|
|
|
|
initSparse<Scalar>(density, mat_d, mat, 0);
|
|
|
|
up = mat.template triangularView<Upper>();
|
|
lo = mat.template triangularView<Lower>();
|
|
|
|
up_sym_d = mat_d.template selfadjointView<Upper>();
|
|
lo_sym_d = mat_d.template selfadjointView<Lower>();
|
|
|
|
VERIFY_IS_APPROX(mat, mat_d);
|
|
VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>()));
|
|
VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>()));
|
|
|
|
PermutationMatrix<Dynamic> p, p_null;
|
|
VectorI pi;
|
|
randomPermutationVector(pi, cols);
|
|
p.indices() = pi;
|
|
|
|
VERIFY(is_sorted(::eval(mat * p)));
|
|
VERIFY(is_sorted(res = mat * p));
|
|
VERIFY_TRANSPOSITION_COUNT(::eval(mat * p), 0);
|
|
VERIFY_TEMPORARY_COUNT(::eval(mat * p), 1)
|
|
res_d = mat_d * p;
|
|
VERIFY(res.isApprox(res_d) && "mat*p");
|
|
|
|
VERIFY(is_sorted(::eval(p * mat)));
|
|
VERIFY(is_sorted(res = p * mat));
|
|
VERIFY_TRANSPOSITION_COUNT(::eval(p * mat), 0);
|
|
VERIFY_TEMPORARY_COUNT(::eval(p * mat), 1);
|
|
res_d = p * mat_d;
|
|
VERIFY(res.isApprox(res_d) && "p*mat");
|
|
|
|
VERIFY(is_sorted((mat * p).eval()));
|
|
VERIFY(is_sorted(res = mat * p.inverse()));
|
|
VERIFY_TRANSPOSITION_COUNT(::eval(mat * p.inverse()), 0);
|
|
VERIFY_TEMPORARY_COUNT(::eval(mat * p.inverse()), 1);
|
|
res_d = mat * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "mat*inv(p)");
|
|
|
|
VERIFY(is_sorted((p * mat + p * mat).eval()));
|
|
VERIFY(is_sorted(res = p.inverse() * mat));
|
|
VERIFY_TRANSPOSITION_COUNT(::eval(p.inverse() * mat), 0);
|
|
VERIFY_TEMPORARY_COUNT(::eval(p.inverse() * mat), 1);
|
|
res_d = p.inverse() * mat_d;
|
|
VERIFY(res.isApprox(res_d) && "inv(p)*mat");
|
|
|
|
//
|
|
|
|
VERIFY(is_sorted((p * mat * p.inverse()).eval()));
|
|
VERIFY(is_sorted(res = mat.twistedBy(p)));
|
|
VERIFY_TRANSPOSITION_COUNT(::eval(p * mat * p.inverse()), 0);
|
|
res_d = (p * mat_d) * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>().twistedBy(p_null)));
|
|
res_d = up_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>().twistedBy(p_null)));
|
|
res_d = lo_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
|
|
|
|
VERIFY(is_sorted(res = up.template selfadjointView<Upper>().twistedBy(p_null)));
|
|
res_d = up_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
|
|
|
|
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>().twistedBy(p_null)));
|
|
res_d = lo_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>()));
|
|
res_d = up_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>()));
|
|
res_d = lo_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
|
|
|
|
VERIFY(is_sorted(res = up.template selfadjointView<Upper>()));
|
|
res_d = up_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
|
|
|
|
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>()));
|
|
res_d = lo_sym_d;
|
|
VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
|
|
|
|
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>();
|
|
res_d = up_sym_d.template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");
|
|
|
|
res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>();
|
|
res_d = up_sym_d.template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");
|
|
|
|
res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>();
|
|
res_d = lo_sym_d.template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper");
|
|
|
|
res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>();
|
|
res_d = lo_sym_d.template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower");
|
|
|
|
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>().twistedBy(p);
|
|
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper");
|
|
|
|
res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>().twistedBy(p);
|
|
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper");
|
|
|
|
res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>().twistedBy(p);
|
|
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower");
|
|
|
|
res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>().twistedBy(p);
|
|
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower");
|
|
|
|
res.template selfadjointView<Upper>() = up.template selfadjointView<Upper>().twistedBy(p);
|
|
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper");
|
|
|
|
res.template selfadjointView<Upper>() = lo.template selfadjointView<Lower>().twistedBy(p);
|
|
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
|
|
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper");
|
|
|
|
res.template selfadjointView<Lower>() = lo.template selfadjointView<Lower>().twistedBy(p);
|
|
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower");
|
|
|
|
res.template selfadjointView<Lower>() = up.template selfadjointView<Upper>().twistedBy(p);
|
|
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
|
|
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>().twistedBy(p)));
|
|
res_d = (p * up_sym_d) * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full");
|
|
|
|
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>().twistedBy(p)));
|
|
res_d = (p * lo_sym_d) * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full");
|
|
|
|
VERIFY(is_sorted(res = up.template selfadjointView<Upper>().twistedBy(p)));
|
|
res_d = (p * up_sym_d) * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full");
|
|
|
|
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>().twistedBy(p)));
|
|
res_d = (p * lo_sym_d) * p.inverse();
|
|
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full");
|
|
}
|
|
|
|
template <typename Scalar>
|
|
void sparse_permutations_all(int size) {
|
|
CALL_SUBTEST((sparse_permutations<ColMajor>(SparseMatrix<Scalar, ColMajor>(size, size))));
|
|
CALL_SUBTEST((sparse_permutations<ColMajor>(SparseMatrix<Scalar, RowMajor>(size, size))));
|
|
CALL_SUBTEST((sparse_permutations<RowMajor>(SparseMatrix<Scalar, ColMajor>(size, size))));
|
|
CALL_SUBTEST((sparse_permutations<RowMajor>(SparseMatrix<Scalar, RowMajor>(size, size))));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(sparse_permutations) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
int s = Eigen::internal::random<int>(1, 50);
|
|
CALL_SUBTEST_1((sparse_permutations_all<double>(s)));
|
|
CALL_SUBTEST_2((sparse_permutations_all<std::complex<double> >(s)));
|
|
}
|
|
|
|
VERIFY((internal::is_same<
|
|
internal::permutation_matrix_product<SparseMatrix<double>, OnTheRight, false, SparseShape>::ReturnType,
|
|
internal::nested_eval<Product<SparseMatrix<double>, PermutationMatrix<Dynamic, Dynamic>, AliasFreeProduct>,
|
|
1>::type>::value));
|
|
|
|
VERIFY((internal::is_same<
|
|
internal::permutation_matrix_product<SparseMatrix<double>, OnTheLeft, false, SparseShape>::ReturnType,
|
|
internal::nested_eval<Product<PermutationMatrix<Dynamic, Dynamic>, SparseMatrix<double>, AliasFreeProduct>,
|
|
1>::type>::value));
|
|
}
|