mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-19 16:17:38 +08:00
360 lines
10 KiB
C++
360 lines
10 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSEVECTOR_H
|
|
#define EIGEN_SPARSEVECTOR_H
|
|
|
|
/** \ingroup SparseCore_Module
|
|
* \class SparseVector
|
|
*
|
|
* \brief a sparse vector class
|
|
*
|
|
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
|
|
*
|
|
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
|
|
*
|
|
* This class can be extended with the help of the plugin mechanism described on the page
|
|
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
struct traits<SparseVector<_Scalar, _Options, _Index> >
|
|
{
|
|
typedef _Scalar Scalar;
|
|
typedef _Index Index;
|
|
typedef Sparse StorageKind;
|
|
typedef MatrixXpr XprKind;
|
|
enum {
|
|
IsColVector = _Options & RowMajorBit ? 0 : 1,
|
|
|
|
RowsAtCompileTime = IsColVector ? Dynamic : 1,
|
|
ColsAtCompileTime = IsColVector ? 1 : Dynamic,
|
|
MaxRowsAtCompileTime = RowsAtCompileTime,
|
|
MaxColsAtCompileTime = ColsAtCompileTime,
|
|
Flags = _Options | NestByRefBit | LvalueBit,
|
|
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
|
SupportedAccessPatterns = InnerRandomAccessPattern
|
|
};
|
|
};
|
|
}
|
|
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
class SparseVector
|
|
: public SparseMatrixBase<SparseVector<_Scalar, _Options, _Index> >
|
|
{
|
|
public:
|
|
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
|
|
|
|
protected:
|
|
public:
|
|
|
|
typedef SparseMatrixBase<SparseVector> SparseBase;
|
|
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
|
|
|
|
enum {
|
|
Options = _Options
|
|
};
|
|
|
|
CompressedStorage<Scalar,Index> m_data;
|
|
Index m_size;
|
|
|
|
CompressedStorage<Scalar,Index>& _data() { return m_data; }
|
|
CompressedStorage<Scalar,Index>& _data() const { return m_data; }
|
|
|
|
public:
|
|
|
|
EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
|
|
EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
|
|
EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
|
|
EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
|
|
EIGEN_STRONG_INLINE Index innerNonZeros(Index j) const { eigen_assert(j==0); return m_size; }
|
|
|
|
EIGEN_STRONG_INLINE const Scalar* _valuePtr() const { return &m_data.value(0); }
|
|
EIGEN_STRONG_INLINE Scalar* _valuePtr() { return &m_data.value(0); }
|
|
|
|
EIGEN_STRONG_INLINE const Index* _innerIndexPtr() const { return &m_data.index(0); }
|
|
EIGEN_STRONG_INLINE Index* _innerIndexPtr() { return &m_data.index(0); }
|
|
|
|
inline Scalar coeff(Index row, Index col) const
|
|
{
|
|
eigen_assert((IsColVector ? col : row)==0);
|
|
return coeff(IsColVector ? row : col);
|
|
}
|
|
inline Scalar coeff(Index i) const { return m_data.at(i); }
|
|
|
|
inline Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
eigen_assert((IsColVector ? col : row)==0);
|
|
return coeff(IsColVector ? row : col);
|
|
}
|
|
|
|
/** \returns a reference to the coefficient value at given index \a i
|
|
* This operation involes a log(rho*size) binary search. If the coefficient does not
|
|
* exist yet, then a sorted insertion into a sequential buffer is performed.
|
|
*
|
|
* This insertion might be very costly if the number of nonzeros above \a i is large.
|
|
*/
|
|
inline Scalar& coeffRef(Index i)
|
|
{
|
|
return m_data.atWithInsertion(i);
|
|
}
|
|
|
|
public:
|
|
|
|
class InnerIterator;
|
|
|
|
inline void setZero() { m_data.clear(); }
|
|
|
|
/** \returns the number of non zero coefficients */
|
|
inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
|
|
|
|
inline void startVec(Index outer)
|
|
{
|
|
eigen_assert(outer==0);
|
|
}
|
|
|
|
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
|
{
|
|
eigen_assert(outer==0);
|
|
return insertBack(inner);
|
|
}
|
|
inline Scalar& insertBack(Index i)
|
|
{
|
|
m_data.append(0, i);
|
|
return m_data.value(m_data.size()-1);
|
|
}
|
|
|
|
inline Scalar& insert(Index row, Index col)
|
|
{
|
|
Index inner = IsColVector ? row : col;
|
|
Index outer = IsColVector ? col : row;
|
|
eigen_assert(outer==0);
|
|
return insert(inner);
|
|
}
|
|
Scalar& insert(Index i)
|
|
{
|
|
Index startId = 0;
|
|
Index p = m_data.size() - 1;
|
|
// TODO smart realloc
|
|
m_data.resize(p+2,1);
|
|
|
|
while ( (p >= startId) && (m_data.index(p) > i) )
|
|
{
|
|
m_data.index(p+1) = m_data.index(p);
|
|
m_data.value(p+1) = m_data.value(p);
|
|
--p;
|
|
}
|
|
m_data.index(p+1) = i;
|
|
m_data.value(p+1) = 0;
|
|
return m_data.value(p+1);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
|
|
|
|
|
|
inline void finalize() {}
|
|
|
|
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
|
|
{
|
|
m_data.prune(reference,epsilon);
|
|
}
|
|
|
|
void resize(Index rows, Index cols)
|
|
{
|
|
eigen_assert(rows==1 || cols==1);
|
|
resize(IsColVector ? rows : cols);
|
|
}
|
|
|
|
void resize(Index newSize)
|
|
{
|
|
m_size = newSize;
|
|
m_data.clear();
|
|
}
|
|
|
|
void resizeNonZeros(Index size) { m_data.resize(size); }
|
|
|
|
inline SparseVector() : m_size(0) { resize(0); }
|
|
|
|
inline SparseVector(Index size) : m_size(0) { resize(size); }
|
|
|
|
inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows,cols); }
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseVector(const MatrixBase<OtherDerived>& other)
|
|
: m_size(0)
|
|
{
|
|
*this = other.derived();
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
|
|
: m_size(0)
|
|
{
|
|
*this = other.derived();
|
|
}
|
|
|
|
inline SparseVector(const SparseVector& other)
|
|
: m_size(0)
|
|
{
|
|
*this = other.derived();
|
|
}
|
|
|
|
inline void swap(SparseVector& other)
|
|
{
|
|
std::swap(m_size, other.m_size);
|
|
m_data.swap(other.m_data);
|
|
}
|
|
|
|
inline SparseVector& operator=(const SparseVector& other)
|
|
{
|
|
if (other.isRValue())
|
|
{
|
|
swap(other.const_cast_derived());
|
|
}
|
|
else
|
|
{
|
|
resize(other.size());
|
|
m_data = other.m_data;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
|
|
{
|
|
if (int(RowsAtCompileTime)!=int(OtherDerived::RowsAtCompileTime))
|
|
return Base::operator=(other.transpose());
|
|
else
|
|
return Base::operator=(other);
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename Lhs, typename Rhs>
|
|
inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
|
{
|
|
return Base::operator=(product);
|
|
}
|
|
#endif
|
|
|
|
friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
|
|
{
|
|
for (Index i=0; i<m.nonZeros(); ++i)
|
|
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
|
|
s << std::endl;
|
|
return s;
|
|
}
|
|
|
|
/** Destructor */
|
|
inline ~SparseVector() {}
|
|
|
|
/** Overloaded for performance */
|
|
Scalar sum() const;
|
|
|
|
public:
|
|
|
|
/** \deprecated use setZero() and reserve() */
|
|
EIGEN_DEPRECATED void startFill(Index reserve)
|
|
{
|
|
setZero();
|
|
m_data.reserve(reserve);
|
|
}
|
|
|
|
/** \deprecated use insertBack(Index,Index) */
|
|
EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
|
|
{
|
|
eigen_assert(r==0 || c==0);
|
|
return fill(IsColVector ? r : c);
|
|
}
|
|
|
|
/** \deprecated use insertBack(Index) */
|
|
EIGEN_DEPRECATED Scalar& fill(Index i)
|
|
{
|
|
m_data.append(0, i);
|
|
return m_data.value(m_data.size()-1);
|
|
}
|
|
|
|
/** \deprecated use insert(Index,Index) */
|
|
EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
|
|
{
|
|
eigen_assert(r==0 || c==0);
|
|
return fillrand(IsColVector ? r : c);
|
|
}
|
|
|
|
/** \deprecated use insert(Index) */
|
|
EIGEN_DEPRECATED Scalar& fillrand(Index i)
|
|
{
|
|
return insert(i);
|
|
}
|
|
|
|
/** \deprecated use finalize() */
|
|
EIGEN_DEPRECATED void endFill() {}
|
|
|
|
# ifdef EIGEN_SPARSEVECTOR_PLUGIN
|
|
# include EIGEN_SPARSEVECTOR_PLUGIN
|
|
# endif
|
|
};
|
|
|
|
template<typename Scalar, int _Options, typename _Index>
|
|
class SparseVector<Scalar,_Options,_Index>::InnerIterator
|
|
{
|
|
public:
|
|
InnerIterator(const SparseVector& vec, Index outer=0)
|
|
: m_data(vec.m_data), m_id(0), m_end(static_cast<Index>(m_data.size()))
|
|
{
|
|
eigen_assert(outer==0);
|
|
}
|
|
|
|
InnerIterator(const CompressedStorage<Scalar,Index>& data)
|
|
: m_data(data), m_id(0), m_end(static_cast<Index>(m_data.size()))
|
|
{}
|
|
|
|
template<unsigned int Added, unsigned int Removed>
|
|
InnerIterator(const Flagged<SparseVector,Added,Removed>& vec, Index )
|
|
: m_data(vec._expression().m_data), m_id(0), m_end(m_data.size())
|
|
{}
|
|
|
|
inline InnerIterator& operator++() { m_id++; return *this; }
|
|
|
|
inline Scalar value() const { return m_data.value(m_id); }
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id)); }
|
|
|
|
inline Index index() const { return m_data.index(m_id); }
|
|
inline Index row() const { return IsColVector ? index() : 0; }
|
|
inline Index col() const { return IsColVector ? 0 : index(); }
|
|
|
|
inline operator bool() const { return (m_id < m_end); }
|
|
|
|
protected:
|
|
const CompressedStorage<Scalar,Index>& m_data;
|
|
Index m_id;
|
|
const Index m_end;
|
|
};
|
|
|
|
#endif // EIGEN_SPARSEVECTOR_H
|