mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
1249 lines
35 KiB
C++
1249 lines
35 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MATHFUNCTIONS_H
|
|
#define EIGEN_MATHFUNCTIONS_H
|
|
|
|
// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
|
|
#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406
|
|
|
|
namespace Eigen {
|
|
|
|
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
|
|
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
|
|
#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
|
|
long abs(long x) { return (labs(x)); }
|
|
double abs(double x) { return (fabs(x)); }
|
|
float abs(float x) { return (fabsf(x)); }
|
|
long double abs(long double x) { return (fabsl(x)); }
|
|
#endif
|
|
|
|
namespace internal {
|
|
|
|
/** \internal \class global_math_functions_filtering_base
|
|
*
|
|
* What it does:
|
|
* Defines a typedef 'type' as follows:
|
|
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
|
|
* global_math_functions_filtering_base<T>::type is a typedef for it.
|
|
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
|
|
*
|
|
* How it's used:
|
|
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
|
|
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
|
|
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
|
|
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
|
|
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
|
|
*
|
|
* How it's implemented:
|
|
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
|
|
* the typename dummy by an integer template parameter, it doesn't work anymore!
|
|
*/
|
|
|
|
template<typename T, typename dummy = void>
|
|
struct global_math_functions_filtering_base
|
|
{
|
|
typedef T type;
|
|
};
|
|
|
|
template<typename T> struct always_void { typedef void type; };
|
|
|
|
template<typename T>
|
|
struct global_math_functions_filtering_base
|
|
<T,
|
|
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
|
|
>
|
|
{
|
|
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
|
|
};
|
|
|
|
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
|
|
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
|
|
|
|
/****************************************************************************
|
|
* Implementation of real *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
|
struct real_default_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
return x;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct real_default_impl<Scalar,true>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
using std::real;
|
|
return real(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
|
|
|
|
template<typename Scalar>
|
|
struct real_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of imag *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
|
struct imag_default_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar&)
|
|
{
|
|
return RealScalar(0);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct imag_default_impl<Scalar,true>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
using std::imag;
|
|
return imag(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
|
|
|
|
template<typename Scalar>
|
|
struct imag_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of real_ref *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar>
|
|
struct real_ref_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar& run(Scalar& x)
|
|
{
|
|
return reinterpret_cast<RealScalar*>(&x)[0];
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline const RealScalar& run(const Scalar& x)
|
|
{
|
|
return reinterpret_cast<const RealScalar*>(&x)[0];
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct real_ref_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real & type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of imag_ref *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsComplex>
|
|
struct imag_ref_default_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar& run(Scalar& x)
|
|
{
|
|
return reinterpret_cast<RealScalar*>(&x)[1];
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline const RealScalar& run(const Scalar& x)
|
|
{
|
|
return reinterpret_cast<RealScalar*>(&x)[1];
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct imag_ref_default_impl<Scalar, false>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static inline Scalar run(Scalar&)
|
|
{
|
|
return Scalar(0);
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline const Scalar run(const Scalar&)
|
|
{
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
|
|
|
template<typename Scalar>
|
|
struct imag_ref_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real & type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of conj *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
|
struct conj_impl
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
return x;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct conj_impl<Scalar,true>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
using std::conj;
|
|
return conj(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct conj_retval
|
|
{
|
|
typedef Scalar type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of abs2 *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar,bool IsComplex>
|
|
struct abs2_impl_default
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
return x*x;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct abs2_impl_default<Scalar, true> // IsComplex
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
return real(x)*real(x) + imag(x)*imag(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct abs2_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct abs2_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of norm1 *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsComplex>
|
|
struct norm1_default_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(abs);
|
|
return abs(real(x)) + abs(imag(x));
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct norm1_default_impl<Scalar, false>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(abs);
|
|
return abs(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
|
|
|
|
template<typename Scalar>
|
|
struct norm1_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of hypot *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar>
|
|
struct hypot_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
static inline RealScalar run(const Scalar& x, const Scalar& y)
|
|
{
|
|
EIGEN_USING_STD_MATH(abs);
|
|
EIGEN_USING_STD_MATH(sqrt);
|
|
RealScalar _x = abs(x);
|
|
RealScalar _y = abs(y);
|
|
Scalar p, qp;
|
|
if(_x>_y)
|
|
{
|
|
p = _x;
|
|
qp = _y / p;
|
|
}
|
|
else
|
|
{
|
|
p = _y;
|
|
qp = _x / p;
|
|
}
|
|
if(p==RealScalar(0)) return RealScalar(0);
|
|
return p * sqrt(RealScalar(1) + qp*qp);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct hypot_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of cast *
|
|
****************************************************************************/
|
|
|
|
template<typename OldType, typename NewType>
|
|
struct cast_impl
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static inline NewType run(const OldType& x)
|
|
{
|
|
return static_cast<NewType>(x);
|
|
}
|
|
};
|
|
|
|
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
|
|
|
|
template<typename OldType, typename NewType>
|
|
EIGEN_DEVICE_FUNC
|
|
inline NewType cast(const OldType& x)
|
|
{
|
|
return cast_impl<OldType, NewType>::run(x);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Implementation of round *
|
|
****************************************************************************/
|
|
|
|
#if EIGEN_HAS_CXX11_MATH
|
|
template<typename Scalar>
|
|
struct round_impl {
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
|
using std::round;
|
|
return round(x);
|
|
}
|
|
};
|
|
#else
|
|
template<typename Scalar>
|
|
struct round_impl
|
|
{
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
|
EIGEN_USING_STD_MATH(floor);
|
|
EIGEN_USING_STD_MATH(ceil);
|
|
return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
|
|
}
|
|
};
|
|
#endif
|
|
|
|
template<typename Scalar>
|
|
struct round_retval
|
|
{
|
|
typedef Scalar type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of arg *
|
|
****************************************************************************/
|
|
|
|
#if EIGEN_HAS_CXX11_MATH
|
|
template<typename Scalar>
|
|
struct arg_impl {
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(arg);
|
|
return arg(x);
|
|
}
|
|
};
|
|
#else
|
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
|
struct arg_default_impl
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct arg_default_impl<Scalar,true>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_DEVICE_FUNC
|
|
static inline RealScalar run(const Scalar& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(arg);
|
|
return arg(x);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
|
|
#endif
|
|
|
|
template<typename Scalar>
|
|
struct arg_retval
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of log1p *
|
|
****************************************************************************/
|
|
template<typename Scalar, bool isComplex = NumTraits<Scalar>::IsComplex >
|
|
struct log1p_impl
|
|
{
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
EIGEN_USING_STD_MATH(log);
|
|
Scalar x1p = RealScalar(1) + x;
|
|
return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
|
|
}
|
|
};
|
|
|
|
#if EIGEN_HAS_CXX11_MATH
|
|
template<typename Scalar>
|
|
struct log1p_impl<Scalar, false> {
|
|
static inline Scalar run(const Scalar& x)
|
|
{
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
|
using std::log1p;
|
|
return log1p(x);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
template<typename Scalar>
|
|
struct log1p_retval
|
|
{
|
|
typedef Scalar type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of pow *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar, bool IsInteger>
|
|
struct pow_default_impl
|
|
{
|
|
typedef Scalar retval;
|
|
static EIGEN_DEVICE_FUNC inline Scalar run(const Scalar& x, const Scalar& y)
|
|
{
|
|
EIGEN_USING_STD_MATH(pow);
|
|
return pow(x, y);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct pow_default_impl<Scalar, true>
|
|
{
|
|
static EIGEN_DEVICE_FUNC inline Scalar run(Scalar x, Scalar y)
|
|
{
|
|
Scalar res(1);
|
|
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
|
|
if(y & 1) res *= x;
|
|
y >>= 1;
|
|
while(y)
|
|
{
|
|
x *= x;
|
|
if(y&1) res *= x;
|
|
y >>= 1;
|
|
}
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
|
|
|
|
template<typename Scalar>
|
|
struct pow_retval
|
|
{
|
|
typedef Scalar type;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of random *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar,
|
|
bool IsComplex,
|
|
bool IsInteger>
|
|
struct random_default_impl {};
|
|
|
|
template<typename Scalar>
|
|
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
|
|
|
template<typename Scalar>
|
|
struct random_retval
|
|
{
|
|
typedef Scalar type;
|
|
};
|
|
|
|
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
|
|
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
|
|
|
|
template<typename Scalar>
|
|
struct random_default_impl<Scalar, false, false>
|
|
{
|
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
|
{
|
|
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
|
|
}
|
|
static inline Scalar run()
|
|
{
|
|
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
|
|
}
|
|
};
|
|
|
|
enum {
|
|
meta_floor_log2_terminate,
|
|
meta_floor_log2_move_up,
|
|
meta_floor_log2_move_down,
|
|
meta_floor_log2_bogus
|
|
};
|
|
|
|
template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
|
|
{
|
|
enum { middle = (lower + upper) / 2,
|
|
value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
|
|
: (n < (1 << middle)) ? int(meta_floor_log2_move_down)
|
|
: (n==0) ? int(meta_floor_log2_bogus)
|
|
: int(meta_floor_log2_move_up)
|
|
};
|
|
};
|
|
|
|
template<unsigned int n,
|
|
int lower = 0,
|
|
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
|
|
int selector = meta_floor_log2_selector<n, lower, upper>::value>
|
|
struct meta_floor_log2 {};
|
|
|
|
template<unsigned int n, int lower, int upper>
|
|
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
|
|
{
|
|
enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
|
|
};
|
|
|
|
template<unsigned int n, int lower, int upper>
|
|
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
|
|
{
|
|
enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
|
|
};
|
|
|
|
template<unsigned int n, int lower, int upper>
|
|
struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
|
|
{
|
|
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
|
|
};
|
|
|
|
template<unsigned int n, int lower, int upper>
|
|
struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
|
|
{
|
|
// no value, error at compile time
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct random_default_impl<Scalar, false, true>
|
|
{
|
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
|
{
|
|
typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
|
|
if(y<x)
|
|
return x;
|
|
std::size_t range = ScalarX(y)-ScalarX(x);
|
|
std::size_t offset = 0;
|
|
// rejection sampling
|
|
std::size_t divisor = (range+RAND_MAX-1)/(range+1);
|
|
std::size_t multiplier = (range+RAND_MAX-1)/std::size_t(RAND_MAX);
|
|
|
|
do {
|
|
offset = ( (std::size_t(std::rand()) * multiplier) / divisor );
|
|
} while (offset > range);
|
|
|
|
return Scalar(ScalarX(x) + offset);
|
|
}
|
|
|
|
static inline Scalar run()
|
|
{
|
|
#ifdef EIGEN_MAKING_DOCS
|
|
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
|
|
#else
|
|
enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
|
|
scalar_bits = sizeof(Scalar) * CHAR_BIT,
|
|
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
|
|
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
|
|
};
|
|
return Scalar((std::rand() >> shift) - offset);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct random_default_impl<Scalar, true, false>
|
|
{
|
|
static inline Scalar run(const Scalar& x, const Scalar& y)
|
|
{
|
|
return Scalar(random(real(x), real(y)),
|
|
random(imag(x), imag(y)));
|
|
}
|
|
static inline Scalar run()
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
return Scalar(random<RealScalar>(), random<RealScalar>());
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
|
|
}
|
|
|
|
// Implementatin of is* functions
|
|
|
|
// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
|
|
#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
|
|
#define EIGEN_USE_STD_FPCLASSIFY 1
|
|
#else
|
|
#define EIGEN_USE_STD_FPCLASSIFY 0
|
|
#endif
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
|
isnan_impl(const T&) { return false; }
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
|
isinf_impl(const T&) { return false; }
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
|
isfinite_impl(const T&) { return true; }
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
|
isfinite_impl(const T& x)
|
|
{
|
|
#ifdef __CUDA_ARCH__
|
|
return (::isfinite)(x);
|
|
#elif EIGEN_USE_STD_FPCLASSIFY
|
|
using std::isfinite;
|
|
return isfinite EIGEN_NOT_A_MACRO (x);
|
|
#else
|
|
return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
|
|
#endif
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
|
isinf_impl(const T& x)
|
|
{
|
|
#ifdef __CUDA_ARCH__
|
|
return (::isinf)(x);
|
|
#elif EIGEN_USE_STD_FPCLASSIFY
|
|
using std::isinf;
|
|
return isinf EIGEN_NOT_A_MACRO (x);
|
|
#else
|
|
return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
|
|
#endif
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
|
isnan_impl(const T& x)
|
|
{
|
|
#ifdef __CUDA_ARCH__
|
|
return (::isnan)(x);
|
|
#elif EIGEN_USE_STD_FPCLASSIFY
|
|
using std::isnan;
|
|
return isnan EIGEN_NOT_A_MACRO (x);
|
|
#else
|
|
return x != x;
|
|
#endif
|
|
}
|
|
|
|
#if (!EIGEN_USE_STD_FPCLASSIFY)
|
|
|
|
#if EIGEN_COMP_MSVC
|
|
|
|
template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
|
|
{
|
|
return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
|
|
}
|
|
|
|
//MSVC defines a _isnan builtin function, but for double only
|
|
EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
|
|
EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
|
|
EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
|
|
|
|
EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
|
|
EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
|
|
EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
|
|
|
|
#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
|
|
|
|
#if EIGEN_GNUC_AT_LEAST(5,0)
|
|
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
|
|
#else
|
|
// NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
|
|
// while the second prevent too aggressive optimizations in fast-math mode:
|
|
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
|
|
#endif
|
|
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
|
|
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
|
|
|
|
#undef EIGEN_TMP_NOOPT_ATTRIB
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// The following overload are defined at the end of this file
|
|
template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
|
|
template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
|
|
template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
|
|
|
|
} // end namespace internal
|
|
|
|
/****************************************************************************
|
|
* Generic math functions *
|
|
****************************************************************************/
|
|
|
|
namespace numext {
|
|
|
|
#ifndef __CUDA_ARCH__
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
|
|
{
|
|
EIGEN_USING_STD_MATH(min);
|
|
return min EIGEN_NOT_A_MACRO (x,y);
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
|
|
{
|
|
EIGEN_USING_STD_MATH(max);
|
|
return max EIGEN_NOT_A_MACRO (x,y);
|
|
}
|
|
#else
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
|
|
{
|
|
return y < x ? y : x;
|
|
}
|
|
template<>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
|
|
{
|
|
return fmin(x, y);
|
|
}
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
|
|
{
|
|
return x < y ? y : x;
|
|
}
|
|
template<>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
|
|
{
|
|
return fmax(x, y);
|
|
}
|
|
#endif
|
|
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
|
|
{
|
|
return internal::real_ref_impl<Scalar>::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
|
|
{
|
|
return internal::imag_ref_impl<Scalar>::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
|
|
}
|
|
|
|
template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
|
|
template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
|
|
template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DEVICE_FUNC
|
|
inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
|
|
{
|
|
return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
T (floor)(const T& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(floor);
|
|
return floor(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float floor(const float &x) { return ::floorf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double floor(const double &x) { return ::floor(x); }
|
|
#endif
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC
|
|
T (ceil)(const T& x)
|
|
{
|
|
EIGEN_USING_STD_MATH(ceil);
|
|
return ceil(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float ceil(const float &x) { return ::ceilf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double ceil(const double &x) { return ::ceil(x); }
|
|
#endif
|
|
|
|
|
|
/** Log base 2 for 32 bits positive integers.
|
|
* Conveniently returns 0 for x==0. */
|
|
inline int log2(int x)
|
|
{
|
|
eigen_assert(x>=0);
|
|
unsigned int v(x);
|
|
static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
return table[(v * 0x07C4ACDDU) >> 27];
|
|
}
|
|
|
|
/** \returns the square root of \a x.
|
|
*
|
|
* It is essentially equivalent to \code using std::sqrt; return sqrt(x); \endcode,
|
|
* but slightly faster for float/double and some compilers (e.g., gcc), thanks to
|
|
* specializations when SSE is enabled.
|
|
*
|
|
* It's usage is justified in performance critical functions, like norm/normalize.
|
|
*/
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
T sqrt(const T &x)
|
|
{
|
|
EIGEN_USING_STD_MATH(sqrt);
|
|
return sqrt(x);
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
T log(const T &x) {
|
|
EIGEN_USING_STD_MATH(log);
|
|
return log(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float log(const float &x) { return ::logf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double log(const double &x) { return ::log(x); }
|
|
#endif
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
T tan(const T &x) {
|
|
EIGEN_USING_STD_MATH(tan);
|
|
return tan(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float tan(const float &x) { return ::tanf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double tan(const double &x) { return ::tan(x); }
|
|
#endif
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
typename NumTraits<T>::Real abs(const T &x) {
|
|
EIGEN_USING_STD_MATH(abs);
|
|
return abs(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float abs(const float &x) { return ::fabsf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double abs(const double &x) { return ::fabs(x); }
|
|
#endif
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
T exp(const T &x) {
|
|
EIGEN_USING_STD_MATH(exp);
|
|
return exp(x);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float exp(const float &x) { return ::expf(x); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double exp(const double &x) { return ::exp(x); }
|
|
#endif
|
|
|
|
|
|
template <typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
T fmod(const T& a, const T& b) {
|
|
EIGEN_USING_STD_MATH(floor);
|
|
return fmod(a, b);
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
template <>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float fmod(const float& a, const float& b) {
|
|
return ::fmodf(a, b);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double fmod(const double& a, const double& b) {
|
|
return ::fmod(a, b);
|
|
}
|
|
#endif
|
|
|
|
} // end namespace numext
|
|
|
|
namespace internal {
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
|
|
{
|
|
return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
|
|
{
|
|
return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
|
|
}
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
|
|
{
|
|
return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Implementation of fuzzy comparisons *
|
|
****************************************************************************/
|
|
|
|
template<typename Scalar,
|
|
bool IsComplex,
|
|
bool IsInteger>
|
|
struct scalar_fuzzy_default_impl {};
|
|
|
|
template<typename Scalar>
|
|
struct scalar_fuzzy_default_impl<Scalar, false, false>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
template<typename OtherScalar> EIGEN_DEVICE_FUNC
|
|
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
|
{
|
|
EIGEN_USING_STD_MATH(abs);
|
|
return abs(x) <= abs(y) * prec;
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
|
{
|
|
EIGEN_USING_STD_MATH(abs);
|
|
return abs(x - y) <= numext::mini(abs(x), abs(y)) * prec;
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
|
{
|
|
return x <= y || isApprox(x, y, prec);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct scalar_fuzzy_default_impl<Scalar, false, true>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
template<typename OtherScalar> EIGEN_DEVICE_FUNC
|
|
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
|
|
{
|
|
return x == Scalar(0);
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
|
|
{
|
|
return x == y;
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
|
|
{
|
|
return x <= y;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct scalar_fuzzy_default_impl<Scalar, true, false>
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
template<typename OtherScalar>
|
|
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
|
|
{
|
|
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
|
|
}
|
|
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
|
|
{
|
|
return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar>
|
|
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
|
|
|
|
template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
|
|
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
|
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
|
{
|
|
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
|
|
}
|
|
|
|
template<typename Scalar> EIGEN_DEVICE_FUNC
|
|
inline bool isApprox(const Scalar& x, const Scalar& y,
|
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
|
{
|
|
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
|
|
}
|
|
|
|
template<typename Scalar> EIGEN_DEVICE_FUNC
|
|
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
|
|
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
|
|
{
|
|
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
|
|
}
|
|
|
|
/******************************************
|
|
*** The special case of the bool type ***
|
|
******************************************/
|
|
|
|
template<> struct random_impl<bool>
|
|
{
|
|
static inline bool run()
|
|
{
|
|
return random<int>(0,1)==0 ? false : true;
|
|
}
|
|
};
|
|
|
|
template<> struct scalar_fuzzy_impl<bool>
|
|
{
|
|
typedef bool RealScalar;
|
|
|
|
template<typename OtherScalar> EIGEN_DEVICE_FUNC
|
|
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
|
|
{
|
|
return !x;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApprox(bool x, bool y, bool)
|
|
{
|
|
return x == y;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
|
|
{
|
|
return (!x) || y;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MATHFUNCTIONS_H
|