eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
2016-01-11 15:53:19 -08:00

293 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
namespace Eigen {
namespace internal {
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
// Full reducers for GPU, don't vectorize for now
// Reducer function that enables multiple cuda thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if __CUDA_ARCH__ >= 300
if (sizeof(T) == 4)
{
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
unsigned int newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned int readback;
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else if (sizeof(T) == 8) {
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
unsigned long long newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned long long readback;
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else {
assert(0 && "Wordsize not supported");
}
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <typename T>
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
#if __CUDA_ARCH__ >= 300
atomicAdd(output, accum);
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output) {
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
if (first_index == 0) {
*output = reducer.initialize();
}
typename Self::CoeffReturnType accum = reducer.initialize();
Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
for (Index i = 0; i < max_iter; i+=BlockSize) {
const Index index = first_index + i;
eigen_assert(index < num_coeffs);
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
reducer.reduce(val, &accum);
}
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
reducer.reduce(__shfl_down(accum, offset), &accum);
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(output, accum, reducer);
}
}
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename OutputType>
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
assert(false && "Should only be called on floats");
}
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
}
};
extern __shared__ float temp[];
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
typename Self::CoeffReturnType* output) {
eigen_assert(blockDim.y == 1);
eigen_assert(blockDim.z == 1);
eigen_assert(gridDim.y == 1);
eigen_assert(gridDim.z == 1);
const int unroll_times = 16;
eigen_assert(NumPerThread % unroll_times == 0);
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
output[i] = reducer.initialize();
}
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
const Index row = i / input_col_blocks;
if (row < num_preserved_coeffs) {
const Index col_block = i % input_col_blocks;
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
float reduced_val = reducer.initialize();
for (Index j = 0; j < NumPerThread; j += unroll_times) {
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
if (last_col >= num_coeffs_to_reduce) {
for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) {
const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
reducer.reduce(val, &reduced_val);
}
break;
} else {
// Faster version of the loop with no branches after unrolling.
#pragma unroll
for (int k = 0; k < unroll_times; ++k) {
const Index col = col_begin + blockDim.x * (j + k);
reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
}
}
}
temp[threadIdx.x] = reduced_val;
__syncthreads();
const int warp_id = threadIdx.x & 31;
if (warp_id < 16) reducer.reduce(temp[threadIdx.x + 16], &temp[threadIdx.x]);
if (warp_id < 8) reducer.reduce(temp[threadIdx.x + 8], &temp[threadIdx.x]);
if (warp_id < 4) reducer.reduce(temp[threadIdx.x + 4], &temp[threadIdx.x]);
if (warp_id < 2) reducer.reduce(temp[threadIdx.x + 2], &temp[threadIdx.x]);
if (warp_id < 1) {
reducer.reduce(temp[threadIdx.x + 1], &temp[threadIdx.x]);
atomicReduce(&(output[row]), temp[threadIdx.x], reducer);
}
}
__syncthreads();
}
}
template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename Device, typename OutputType>
static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce floats on a gpu device");
}
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = 32;
LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, block_size*sizeof(float), device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
}
};
template <int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
typename Self::CoeffReturnType* output) {
const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// Initialize the output values
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
output[i] = reducer.initialize();
}
// Do the reduction.
const Index max_iter = divup<Index>(num_coeffs_to_reduce, NumPerThread) * num_preserved_coeffs;
for (Index i = thread_id; i < max_iter; i += num_threads) {
const Index input_col = i % num_preserved_coeffs;
const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
typename Self::CoeffReturnType reduced_val = reducer.initialize();
const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
for (Index j = input_row; j < max_row; j++) {
typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
reducer.reduce(val, &reduced_val);
}
atomicReduce(&(output[input_col]), reduced_val, reducer);
}
}
template <typename Self, typename Op>
struct OuterReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename Device, typename OutputType>
static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce floats on a gpu device");
}
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = 256;
const int num_per_thread = 16;
const int dyn_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
}
};
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H