Basil Fierz 624df50945 Adds missing EIGEN_STRONG_INLINE to support MSVC properly inlining small vector calculations
When working with MSVC often small vector operations are not properly inlined. This behaviour is observed even on the most recent compiler versions.
2017-10-26 22:44:28 +02:00

319 lines
11 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
namespace Eigen {
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
bool NeedToTranspose = T::IsVectorAtCompileTime
&& U::IsVectorAtCompileTime
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.template binaryExpr<conj_prod>(b).sum();
}
};
template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.transpose().template binaryExpr<conj_prod>(b).sum();
}
};
} // end namespace internal
/** \fn MatrixBase::dot
* \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG))
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
#endif
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself.
*
* \sa dot(), norm(), lpNorm()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return numext::real((*this).cwiseAbs2().sum());
}
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
*
* \sa lpNorm(), dot(), squaredNorm()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
return numext::sqrt(squaredNorm());
}
/** \returns an expression of the quotient of \c *this by its own norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
typedef typename internal::nested_eval<Derived,2>::type _Nested;
_Nested n(derived());
RealScalar z = n.squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if(z>RealScalar(0))
return n / numext::sqrt(z);
else
return n;
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa norm(), normalized()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize()
{
RealScalar z = squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if(z>RealScalar(0))
derived() /= numext::sqrt(z);
}
/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow.
*
* \only_for_vectors
*
* This method is analogue to the normalized() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \sa stableNorm(), stableNormalize(), normalized()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::stableNormalized() const
{
typedef typename internal::nested_eval<Derived,3>::type _Nested;
_Nested n(derived());
RealScalar w = n.cwiseAbs().maxCoeff();
RealScalar z = (n/w).squaredNorm();
if(z>RealScalar(0))
return n / (numext::sqrt(z)*w);
else
return n;
}
/** Normalizes the vector while avoid underflow and overflow
*
* \only_for_vectors
*
* This method is analogue to the normalize() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa stableNorm(), stableNormalized(), normalize()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize()
{
RealScalar w = cwiseAbs().maxCoeff();
RealScalar z = (derived()/w).squaredNorm();
if(z>RealScalar(0))
derived() /= numext::sqrt(z)*w;
}
//---------- implementation of other norms ----------
namespace internal {
template<typename Derived, int p>
struct lpNorm_selector
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const MatrixBase<Derived>& m)
{
EIGEN_USING_STD_MATH(pow)
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const MatrixBase<Derived>& m)
{
if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0))
return RealScalar(0);
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of \c *this.
*
* In all cases, if \c *this is empty, then the value 0 is returned.
*
* \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
#else
EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar
#endif
MatrixBase<Derived>::lpNorm() const
{
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,2>::type nested(derived());
typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index i = 0; i < cols(); ++i)
{
if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
return false;
for(Index j = 0; j < i; ++j)
if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DOT_H