mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-04 11:10:40 +08:00
415 lines
16 KiB
C++
415 lines
16 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
||
// for linear algebra.
|
||
//
|
||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
//
|
||
// This Source Code Form is subject to the terms of the Mozilla
|
||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
||
#ifndef EIGEN_SKEWSYMMETRICMATRIX3_H
|
||
#define EIGEN_SKEWSYMMETRICMATRIX3_H
|
||
|
||
#include "./InternalHeaderCheck.h"
|
||
|
||
namespace Eigen {
|
||
|
||
/** \class SkewSymmetricBase
|
||
* \ingroup Core_Module
|
||
*
|
||
* \brief Base class for skew symmetric matrices and expressions
|
||
*
|
||
* This is the base class that is inherited by SkewSymmetricMatrix3 and related expression
|
||
* types, which internally use a three vector for storing the entries. SkewSymmetric
|
||
* types always represent square three times three matrices.
|
||
*
|
||
* This implementations follows class DiagonalMatrix
|
||
*
|
||
* \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper.
|
||
*
|
||
* \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper
|
||
*/
|
||
template<typename Derived>
|
||
class SkewSymmetricBase : public EigenBase<Derived>
|
||
{
|
||
public:
|
||
typedef typename internal::traits<Derived>::SkewSymmetricVectorType SkewSymmetricVectorType;
|
||
typedef typename SkewSymmetricVectorType::Scalar Scalar;
|
||
typedef typename SkewSymmetricVectorType::RealScalar RealScalar;
|
||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
|
||
|
||
enum {
|
||
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||
IsVectorAtCompileTime = 0,
|
||
Flags = NoPreferredStorageOrderBit
|
||
};
|
||
|
||
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
|
||
typedef DenseMatrixType DenseType;
|
||
typedef SkewSymmetricMatrix3<Scalar> PlainObject;
|
||
|
||
/** \returns a reference to the derived object. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||
/** \returns a const reference to the derived object. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||
|
||
/**
|
||
* Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type,
|
||
* not an expression.
|
||
* \returns A dense matrix, with its entries set from the the derived object. */
|
||
EIGEN_DEVICE_FUNC
|
||
DenseMatrixType toDenseMatrix() const { return derived(); }
|
||
|
||
/** Determinant vanishes */
|
||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||
inline Scalar determinant() const { return 0; }
|
||
|
||
/** A.transpose() = -A */
|
||
EIGEN_DEVICE_FUNC
|
||
PlainObject transpose() const { return (-vector()).asSkewSymmetric(); }
|
||
|
||
/** \returns the exponential of this matrix using Rodrigues’ formula */
|
||
EIGEN_DEVICE_FUNC
|
||
DenseMatrixType exponential() const {
|
||
DenseMatrixType retVal = DenseMatrixType::Identity();
|
||
const SkewSymmetricVectorType& v = vector();
|
||
if (v.isZero()) {
|
||
return retVal;
|
||
}
|
||
const Scalar norm2 = v.squaredNorm();
|
||
const Scalar norm = numext::sqrt(norm2);
|
||
retVal += ((((1 - numext::cos(norm))/norm2)*derived())*derived()) + (numext::sin(norm)/norm)*derived().toDenseMatrix();
|
||
return retVal;
|
||
}
|
||
|
||
/** \returns a reference to the derived object's vector of coefficients. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline const SkewSymmetricVectorType& vector() const { return derived().vector(); }
|
||
/** \returns a const reference to the derived object's vector of coefficients. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricVectorType& vector() { return derived().vector(); }
|
||
|
||
/** \returns the number of rows. */
|
||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||
inline Index rows() const { return 3; }
|
||
/** \returns the number of columns. */
|
||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||
inline Index cols() const { return 3; }
|
||
|
||
/** \returns the matrix product of \c *this by the dense matrix, \a matrix */
|
||
template<typename MatrixDerived>
|
||
EIGEN_DEVICE_FUNC
|
||
Product<Derived,MatrixDerived,LazyProduct>
|
||
operator*(const MatrixBase<MatrixDerived> &matrix) const
|
||
{
|
||
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
|
||
}
|
||
|
||
/** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */
|
||
template<typename MatrixDerived>
|
||
EIGEN_DEVICE_FUNC
|
||
Product<Derived,MatrixDerived,LazyProduct>
|
||
operator*(const SkewSymmetricBase<MatrixDerived> &matrix) const
|
||
{
|
||
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
|
||
}
|
||
|
||
template <typename OtherDerived>
|
||
using SkewSymmetricProductReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, product)>;
|
||
|
||
/** \returns the wedge product of \c *this by the skew symmetric matrix \a other
|
||
* A wedge B = AB - BA */
|
||
template <typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType<OtherDerived> wedge(
|
||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||
return vector().cross(other.vector()).asSkewSymmetric();
|
||
}
|
||
|
||
using SkewSymmetricScaleReturnType =
|
||
SkewSymmetricWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SkewSymmetricVectorType, Scalar, product)>;
|
||
|
||
/** \returns the product of \c *this by the scalar \a scalar */
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const {
|
||
return (vector() * scalar).asSkewSymmetric();
|
||
}
|
||
|
||
using ScaleSkewSymmetricReturnType =
|
||
SkewSymmetricWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, SkewSymmetricVectorType, product)>;
|
||
|
||
/** \returns the product of a scalar and the skew symmetric matrix \a other */
|
||
EIGEN_DEVICE_FUNC
|
||
friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, const SkewSymmetricBase& other) {
|
||
return (scalar * other.vector()).asSkewSymmetric();
|
||
}
|
||
|
||
template <typename OtherDerived>
|
||
using SkewSymmetricSumReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, sum)>;
|
||
|
||
/** \returns the sum of \c *this and the skew symmetric matrix \a other */
|
||
template <typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType<OtherDerived> operator+(
|
||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||
return (vector() + other.vector()).asSkewSymmetric();
|
||
}
|
||
|
||
template <typename OtherDerived>
|
||
using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, difference)>;
|
||
|
||
/** \returns the difference of \c *this and the skew symmetric matrix \a other */
|
||
template <typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType<OtherDerived> operator-(
|
||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||
return (vector() - other.vector()).asSkewSymmetric();
|
||
}
|
||
};
|
||
|
||
/** \class SkewSymmetricMatrix3
|
||
* \ingroup Core_Module
|
||
*
|
||
* \brief Represents a 3x3 skew symmetric matrix with its storage
|
||
*
|
||
* \tparam Scalar_ the type of coefficients
|
||
*
|
||
* \sa class SkewSymmetricBase, class SkewSymmetricWrapper
|
||
*/
|
||
|
||
namespace internal {
|
||
template<typename Scalar_>
|
||
struct traits<SkewSymmetricMatrix3<Scalar_> >
|
||
: traits<Matrix<Scalar_,3,3,0,3,3> >
|
||
{
|
||
typedef Matrix<Scalar_,3,1,0,3,1> SkewSymmetricVectorType;
|
||
typedef SkewSymmetricShape StorageKind;
|
||
enum {
|
||
Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit
|
||
};
|
||
};
|
||
}
|
||
template<typename Scalar_>
|
||
class SkewSymmetricMatrix3
|
||
: public SkewSymmetricBase<SkewSymmetricMatrix3<Scalar_> >
|
||
{
|
||
public:
|
||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||
typedef typename internal::traits<SkewSymmetricMatrix3>::SkewSymmetricVectorType SkewSymmetricVectorType;
|
||
typedef const SkewSymmetricMatrix3& Nested;
|
||
typedef Scalar_ Scalar;
|
||
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageKind StorageKind;
|
||
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageIndex StorageIndex;
|
||
#endif
|
||
|
||
protected:
|
||
|
||
SkewSymmetricVectorType m_vector;
|
||
|
||
public:
|
||
|
||
/** const version of vector(). */
|
||
EIGEN_DEVICE_FUNC
|
||
inline const SkewSymmetricVectorType& vector() const { return m_vector; }
|
||
/** \returns a reference to the stored vector of coefficients. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricVectorType& vector() { return m_vector; }
|
||
|
||
/** Default constructor without initialization */
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricMatrix3() {}
|
||
|
||
/** Constructor from three scalars */
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) : m_vector(x,y,z) {}
|
||
|
||
/** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */
|
||
EIGEN_DEVICE_FUNC
|
||
explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {}
|
||
|
||
/** generic constructor from expression of the coefficients */
|
||
template<typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC
|
||
explicit inline SkewSymmetricMatrix3(const MatrixBase<OtherDerived>& other) : m_vector(other)
|
||
{}
|
||
|
||
/** Copy constructor. */
|
||
template<typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC
|
||
inline SkewSymmetricMatrix3(const SkewSymmetricBase<OtherDerived>& other) : m_vector(other.vector()) {}
|
||
|
||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
|
||
inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {}
|
||
#endif
|
||
|
||
/** Copy operator. */
|
||
template<typename OtherDerived>
|
||
EIGEN_DEVICE_FUNC
|
||
SkewSymmetricMatrix3& operator=(const SkewSymmetricBase<OtherDerived>& other)
|
||
{
|
||
m_vector = other.vector();
|
||
return *this;
|
||
}
|
||
|
||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||
/** This is a special case of the templated operator=. Its purpose is to
|
||
* prevent a default operator= from hiding the templated operator=.
|
||
*/
|
||
EIGEN_DEVICE_FUNC
|
||
SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other)
|
||
{
|
||
m_vector = other.vector();
|
||
return *this;
|
||
}
|
||
#endif
|
||
|
||
typedef SkewSymmetricWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, SkewSymmetricVectorType>>
|
||
InitializeReturnType;
|
||
|
||
/** Initializes a skew symmetric matrix with coefficients set to zero */
|
||
EIGEN_DEVICE_FUNC
|
||
static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); }
|
||
|
||
/** Sets all coefficients to zero. */
|
||
EIGEN_DEVICE_FUNC
|
||
inline void setZero() { m_vector.setZero(); }
|
||
};
|
||
|
||
/** \class SkewSymmetricWrapper
|
||
* \ingroup Core_Module
|
||
*
|
||
* \brief Expression of a skew symmetric matrix
|
||
*
|
||
* \tparam SkewSymmetricVectorType_ the type of the vector of coefficients
|
||
*
|
||
* This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients,
|
||
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric()
|
||
* and most of the time this is the only way that it is used.
|
||
*
|
||
* \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric()
|
||
*/
|
||
|
||
namespace internal {
|
||
template<typename SkewSymmetricVectorType_>
|
||
struct traits<SkewSymmetricWrapper<SkewSymmetricVectorType_> >
|
||
{
|
||
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
|
||
typedef typename SkewSymmetricVectorType::Scalar Scalar;
|
||
typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex;
|
||
typedef SkewSymmetricShape StorageKind;
|
||
typedef typename traits<SkewSymmetricVectorType>::XprKind XprKind;
|
||
enum {
|
||
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||
Flags = (traits<SkewSymmetricVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
|
||
};
|
||
};
|
||
}
|
||
|
||
template<typename SkewSymmetricVectorType_>
|
||
class SkewSymmetricWrapper
|
||
: public SkewSymmetricBase<SkewSymmetricWrapper<SkewSymmetricVectorType_> >, internal::no_assignment_operator
|
||
{
|
||
public:
|
||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
|
||
typedef SkewSymmetricWrapper Nested;
|
||
#endif
|
||
|
||
/** Constructor from expression of coefficients to wrap. */
|
||
EIGEN_DEVICE_FUNC
|
||
explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {}
|
||
|
||
/** \returns a const reference to the wrapped expression of coefficients. */
|
||
EIGEN_DEVICE_FUNC
|
||
const SkewSymmetricVectorType& vector() const { return m_vector; }
|
||
|
||
protected:
|
||
typename SkewSymmetricVectorType::Nested m_vector;
|
||
};
|
||
|
||
/** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients
|
||
*
|
||
* \only_for_vectors
|
||
*
|
||
* \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric()
|
||
**/
|
||
template<typename Derived>
|
||
EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper<const Derived>
|
||
MatrixBase<Derived>::asSkewSymmetric() const
|
||
{
|
||
return SkewSymmetricWrapper<const Derived>(derived());
|
||
}
|
||
|
||
/** \returns true if *this is approximately equal to a skew symmetric matrix,
|
||
* within the precision given by \a prec.
|
||
*/
|
||
template<typename Derived>
|
||
bool MatrixBase<Derived>::isSkewSymmetric(const RealScalar& prec) const
|
||
{
|
||
if(cols() != rows()) return false;
|
||
return (this->transpose() + *this).isZero(prec);
|
||
}
|
||
|
||
/** \returns the matrix product of \c *this by the skew symmetric matrix \skew.
|
||
*/
|
||
template<typename Derived>
|
||
template<typename SkewDerived>
|
||
EIGEN_DEVICE_FUNC inline const Product<Derived, SkewDerived, LazyProduct>
|
||
MatrixBase<Derived>::operator*(const SkewSymmetricBase<SkewDerived> &skew) const
|
||
{
|
||
return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived());
|
||
}
|
||
|
||
namespace internal {
|
||
|
||
template<> struct storage_kind_to_shape<SkewSymmetricShape> { typedef SkewSymmetricShape Shape; };
|
||
|
||
struct SkewSymmetric2Dense {};
|
||
|
||
template<> struct AssignmentKind<DenseShape,SkewSymmetricShape> { typedef SkewSymmetric2Dense Kind; };
|
||
|
||
// SkewSymmetric matrix to Dense assignment
|
||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||
struct Assignment<DstXprType, SrcXprType, Functor, SkewSymmetric2Dense>
|
||
{
|
||
EIGEN_DEVICE_FUNC
|
||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||
{
|
||
if((dst.rows()!=3) || (dst.cols()!=3)) {
|
||
dst.resize(3, 3);
|
||
}
|
||
dst.diagonal().setZero();
|
||
const typename SrcXprType::SkewSymmetricVectorType v = src.vector();
|
||
dst(0, 1) = -v(2);
|
||
dst(1, 0) = v(2);
|
||
dst(0, 2) = v(1);
|
||
dst(2, 0) = -v(1);
|
||
dst(1, 2) = -v(0);
|
||
dst(2, 1) = v(0);
|
||
}
|
||
EIGEN_DEVICE_FUNC
|
||
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||
{ dst.vector() += src.vector(); }
|
||
|
||
EIGEN_DEVICE_FUNC
|
||
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||
{ dst.vector() -= src.vector(); }
|
||
};
|
||
|
||
} // namespace internal
|
||
|
||
} // end namespace Eigen
|
||
|
||
#endif // EIGEN_SKEWSYMMETRICMATRIX3_H
|