mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
397 lines
13 KiB
C++
397 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_REDUX_H
|
|
#define EIGEN_REDUX_H
|
|
|
|
// TODO
|
|
// * implement other kind of vectorization
|
|
// * factorize code
|
|
|
|
/***************************************************************************
|
|
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
|
***************************************************************************/
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_traits
|
|
{
|
|
public:
|
|
enum {
|
|
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
|
InnerMaxSize = int(Derived::IsRowMajor)
|
|
? Derived::MaxColsAtCompileTime
|
|
: Derived::MaxRowsAtCompileTime
|
|
};
|
|
|
|
enum {
|
|
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
|
|
&& (ei_functor_traits<Func>::PacketAccess),
|
|
MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
|
|
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
|
|
};
|
|
|
|
public:
|
|
enum {
|
|
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
|
|
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
|
|
: int(DefaultTraversal)
|
|
};
|
|
|
|
public:
|
|
enum {
|
|
Cost = ( Derived::SizeAtCompileTime == Dynamic
|
|
|| Derived::CoeffReadCost == Dynamic
|
|
|| (Derived::SizeAtCompileTime!=1 && ei_functor_traits<Func>::Cost == Dynamic)
|
|
) ? Dynamic
|
|
: Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
|
+ (Derived::SizeAtCompileTime-1) * ei_functor_traits<Func>::Cost,
|
|
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
|
|
};
|
|
|
|
public:
|
|
enum {
|
|
Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
|
|
? CompleteUnrolling
|
|
: NoUnrolling
|
|
};
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Part 2 : unrollers
|
|
***************************************************************************/
|
|
|
|
/*** no vectorization ***/
|
|
|
|
template<typename Func, typename Derived, int Start, int Length>
|
|
struct ei_redux_novec_unroller
|
|
{
|
|
enum {
|
|
HalfLength = Length/2
|
|
};
|
|
|
|
typedef typename Derived::Scalar Scalar;
|
|
|
|
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func)
|
|
{
|
|
return func(ei_redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
|
ei_redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
|
}
|
|
};
|
|
|
|
template<typename Func, typename Derived, int Start>
|
|
struct ei_redux_novec_unroller<Func, Derived, Start, 1>
|
|
{
|
|
enum {
|
|
outer = Start / Derived::InnerSizeAtCompileTime,
|
|
inner = Start % Derived::InnerSizeAtCompileTime
|
|
};
|
|
|
|
typedef typename Derived::Scalar Scalar;
|
|
|
|
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&)
|
|
{
|
|
return mat.coeffByOuterInner(outer, inner);
|
|
}
|
|
};
|
|
|
|
// This is actually dead code and will never be called. It is required
|
|
// to prevent false warnings regarding failed inlining though
|
|
// for 0 length run() will never be called at all.
|
|
template<typename Func, typename Derived, int Start>
|
|
struct ei_redux_novec_unroller<Func, Derived, Start, 0>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
EIGEN_STRONG_INLINE static Scalar run(const Derived&, const Func&) { return Scalar(); }
|
|
};
|
|
|
|
/*** vectorization ***/
|
|
|
|
template<typename Func, typename Derived, int Start, int Length>
|
|
struct ei_redux_vec_unroller
|
|
{
|
|
enum {
|
|
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
|
HalfLength = Length/2
|
|
};
|
|
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
|
|
|
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func)
|
|
{
|
|
return func.packetOp(
|
|
ei_redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
|
ei_redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
|
}
|
|
};
|
|
|
|
template<typename Func, typename Derived, int Start>
|
|
struct ei_redux_vec_unroller<Func, Derived, Start, 1>
|
|
{
|
|
enum {
|
|
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
|
outer = index / int(Derived::InnerSizeAtCompileTime),
|
|
inner = index % int(Derived::InnerSizeAtCompileTime),
|
|
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
|
};
|
|
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
|
|
|
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&)
|
|
{
|
|
return mat.template packetByOuterInner<alignment>(outer, inner);
|
|
}
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Part 3 : implementation of all cases
|
|
***************************************************************************/
|
|
|
|
template<typename Func, typename Derived,
|
|
int Traversal = ei_redux_traits<Func, Derived>::Traversal,
|
|
int Unrolling = ei_redux_traits<Func, Derived>::Unrolling
|
|
>
|
|
struct ei_redux_impl;
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename Derived::Index Index;
|
|
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
|
|
{
|
|
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
|
Scalar res;
|
|
res = mat.coeffByOuterInner(0, 0);
|
|
for(Index i = 1; i < mat.innerSize(); ++i)
|
|
res = func(res, mat.coeffByOuterInner(0, i));
|
|
for(Index i = 1; i < mat.outerSize(); ++i)
|
|
for(Index j = 0; j < mat.innerSize(); ++j)
|
|
res = func(res, mat.coeffByOuterInner(i, j));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
|
|
: public ei_redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
|
{};
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
|
typedef typename Derived::Index Index;
|
|
|
|
static Scalar run(const Derived& mat, const Func& func)
|
|
{
|
|
const Index size = mat.size();
|
|
ei_assert(size && "you are using an empty matrix");
|
|
const Index packetSize = ei_packet_traits<Scalar>::size;
|
|
const Index alignedStart = ei_first_aligned(mat);
|
|
enum {
|
|
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
|
? Aligned : Unaligned
|
|
};
|
|
const Index alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
|
const Index alignedEnd = alignedStart + alignedSize;
|
|
Scalar res;
|
|
if(alignedSize)
|
|
{
|
|
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
|
for(Index index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
|
packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index));
|
|
res = func.predux(packet_res);
|
|
|
|
for(Index index = 0; index < alignedStart; ++index)
|
|
res = func(res,mat.coeff(index));
|
|
|
|
for(Index index = alignedEnd; index < size; ++index)
|
|
res = func(res,mat.coeff(index));
|
|
}
|
|
else // too small to vectorize anything.
|
|
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
|
{
|
|
res = mat.coeff(0);
|
|
for(Index index = 1; index < size; ++index)
|
|
res = func(res,mat.coeff(index));
|
|
}
|
|
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
|
typedef typename Derived::Index Index;
|
|
|
|
static Scalar run(const Derived& mat, const Func& func)
|
|
{
|
|
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
|
const Index innerSize = mat.innerSize();
|
|
const Index outerSize = mat.outerSize();
|
|
enum {
|
|
packetSize = ei_packet_traits<Scalar>::size
|
|
};
|
|
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
|
|
Scalar res;
|
|
if(packetedInnerSize)
|
|
{
|
|
PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
|
|
for(Index j=0; j<outerSize; ++j)
|
|
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
|
|
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
|
|
|
|
res = func.predux(packet_res);
|
|
for(Index j=0; j<outerSize; ++j)
|
|
for(Index i=packetedInnerSize; i<innerSize; ++i)
|
|
res = func(res, mat.coeffByOuterInner(j,i));
|
|
}
|
|
else // too small to vectorize anything.
|
|
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
|
{
|
|
res = ei_redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<typename Func, typename Derived>
|
|
struct ei_redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
|
enum {
|
|
PacketSize = ei_packet_traits<Scalar>::size,
|
|
Size = Derived::SizeAtCompileTime,
|
|
VectorizedSize = (Size / PacketSize) * PacketSize
|
|
};
|
|
EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func)
|
|
{
|
|
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
|
Scalar res = func.predux(ei_redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
|
if (VectorizedSize != Size)
|
|
res = func(res,ei_redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
|
|
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
|
*
|
|
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
|
* an associative operator. Both current STL and TR1 functor styles are handled.
|
|
*
|
|
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename Func>
|
|
EIGEN_STRONG_INLINE typename ei_result_of<Func(typename ei_traits<Derived>::Scalar)>::type
|
|
DenseBase<Derived>::redux(const Func& func) const
|
|
{
|
|
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
|
|
return ei_redux_impl<Func, ThisNested>
|
|
::run(derived(), func);
|
|
}
|
|
|
|
/** \returns the minimum of all coefficients of *this
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
DenseBase<Derived>::minCoeff() const
|
|
{
|
|
return this->redux(Eigen::ei_scalar_min_op<Scalar>());
|
|
}
|
|
|
|
/** \returns the maximum of all coefficients of *this
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
DenseBase<Derived>::maxCoeff() const
|
|
{
|
|
return this->redux(Eigen::ei_scalar_max_op<Scalar>());
|
|
}
|
|
|
|
/** \returns the sum of all coefficients of *this
|
|
*
|
|
* \sa trace(), prod(), mean()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
DenseBase<Derived>::sum() const
|
|
{
|
|
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
|
return Scalar(0);
|
|
return this->redux(Eigen::ei_scalar_sum_op<Scalar>());
|
|
}
|
|
|
|
/** \returns the mean of all coefficients of *this
|
|
*
|
|
* \sa trace(), prod(), sum()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
DenseBase<Derived>::mean() const
|
|
{
|
|
return Scalar(this->redux(Eigen::ei_scalar_sum_op<Scalar>())) / Scalar(this->size());
|
|
}
|
|
|
|
/** \returns the product of all coefficients of *this
|
|
*
|
|
* Example: \include MatrixBase_prod.cpp
|
|
* Output: \verbinclude MatrixBase_prod.out
|
|
*
|
|
* \sa sum(), mean(), trace()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
DenseBase<Derived>::prod() const
|
|
{
|
|
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
|
return Scalar(1);
|
|
return this->redux(Eigen::ei_scalar_product_op<Scalar>());
|
|
}
|
|
|
|
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
|
*
|
|
* \c *this can be any matrix, not necessarily square.
|
|
*
|
|
* \sa diagonal(), sum()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
|
MatrixBase<Derived>::trace() const
|
|
{
|
|
return derived().diagonal().sum();
|
|
}
|
|
|
|
#endif // EIGEN_REDUX_H
|