mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
239 lines
7.2 KiB
C++
239 lines
7.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
|
|
|
|
|
|
namespace Eigen {
|
|
|
|
/** \internal
|
|
*
|
|
* \class TensorIntDiv
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Fast integer division by a constant.
|
|
*
|
|
* See the paper from Granlund and Montgomery for explanation.
|
|
* (at http://dx.doi.org/10.1145/773473.178249)
|
|
*
|
|
* \sa Tensor
|
|
*/
|
|
|
|
namespace internal {
|
|
|
|
namespace {
|
|
// Note: result is undefined if val == 0
|
|
template <typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int count_leading_zeros(const T val)
|
|
{
|
|
#ifdef __CUDA_ARCH__
|
|
if (sizeof(T) == 8) {
|
|
return __clzll(val);
|
|
}
|
|
return __clz(val);
|
|
#elif EIGEN_COMP_MSVC
|
|
DWORD leading_zeros = 0;
|
|
if (sizeof(T) == 8) {
|
|
_BitScanReverse64(&leading_zero, val);
|
|
}
|
|
else {
|
|
_BitScanReverse(&leading_zero, val);
|
|
}
|
|
#else
|
|
if (sizeof(T) == 8) {
|
|
return __builtin_clzl(static_cast<uint64_t>(val));
|
|
}
|
|
return __builtin_clz(static_cast<uint32_t>(val));
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
struct UnsignedTraits {
|
|
typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type;
|
|
};
|
|
|
|
template <typename T>
|
|
struct DividerTraits {
|
|
#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
|
|
typedef typename UnsignedTraits<T>::type type;
|
|
static const int N = sizeof(T) * 8;
|
|
#else
|
|
typedef uint32_t type;
|
|
static const int N = 32;
|
|
#endif
|
|
};
|
|
|
|
template <typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) {
|
|
#if defined(__CUDA_ARCH__)
|
|
return __umulhi(a, b);
|
|
#else
|
|
return (static_cast<uint64_t>(a) * b) >> 32;
|
|
#endif
|
|
}
|
|
|
|
#if defined(__CUDA_ARCH__)
|
|
template <typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
|
|
return __umul64hi(a, b);
|
|
}
|
|
#else
|
|
template <typename T>
|
|
EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
|
|
#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
|
|
__uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b);
|
|
return static_cast<uint64_t>(v >> 64);
|
|
#else
|
|
EIGEN_STATIC_ASSERT(sizeof(T) == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
return (a * b) >> 32;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
template <int N, typename T>
|
|
struct DividerHelper {
|
|
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier (const int log_div, const T divider) {
|
|
EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
return (static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1;
|
|
}
|
|
};
|
|
|
|
#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
|
|
template <typename T>
|
|
struct DividerHelper<64, T> {
|
|
static EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
|
|
return ((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1);
|
|
}
|
|
};
|
|
#endif
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
struct TensorIntDivisor {
|
|
public:
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
|
|
multiplier = 0;
|
|
shift1 = 0;
|
|
shift2 = 0;
|
|
}
|
|
|
|
// Must have 0 < divider < 2^31. This is relaxed to
|
|
// 0 < divider < 2^63 when using 64-bit indices on platforms that support
|
|
// the __uint128_t type.
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) {
|
|
const int N = DividerTraits<T>::N;
|
|
eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2);
|
|
eigen_assert(divider > 0);
|
|
|
|
// fast ln2
|
|
const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider));
|
|
int log_div = N - leading_zeros;
|
|
// if divider is a power of two then log_div is 1 more than it should be.
|
|
if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider))
|
|
log_div--;
|
|
|
|
multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider);
|
|
shift1 = log_div > 1 ? 1 : log_div;
|
|
shift2 = log_div > 1 ? log_div-1 : 0;
|
|
}
|
|
|
|
// Must have 0 <= numerator. On platforms that dont support the __uint128_t
|
|
// type numerator should also be less than 2^32-1.
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const {
|
|
eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2);
|
|
eigen_assert(numerator >= 0);
|
|
|
|
UnsignedType t1 = muluh(multiplier, numerator);
|
|
UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1;
|
|
return (t1 + t) >> shift2;
|
|
}
|
|
|
|
private:
|
|
typedef typename DividerTraits<T>::type UnsignedType;
|
|
UnsignedType multiplier;
|
|
int32_t shift1;
|
|
int32_t shift2;
|
|
};
|
|
|
|
|
|
// Optimized version for signed 32 bit integers.
|
|
// Derived from Hacker's Delight.
|
|
template <>
|
|
class TensorIntDivisor<int32_t> {
|
|
public:
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
|
|
magic = 0;
|
|
shift = 0;
|
|
}
|
|
// Must have 2 <= divider
|
|
EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) {
|
|
eigen_assert(divider >= 2);
|
|
calcMagic(divider);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const {
|
|
#ifdef __CUDA_ARCH__
|
|
return (__umulhi(magic, n) >> shift);
|
|
#else
|
|
uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n);
|
|
return (static_cast<uint32_t>(v >> 32) >> shift);
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
// Compute the magic numbers. See Hacker's Delight section 10 for an in
|
|
// depth explanation.
|
|
EIGEN_DEVICE_FUNC void calcMagic(int32_t d) {
|
|
const unsigned two31 = 0x80000000; // 2**31.
|
|
unsigned ad = d;
|
|
unsigned t = two31 + (ad >> 31);
|
|
unsigned anc = t - 1 - t%ad; // Absolute value of nc.
|
|
int p = 31; // Init. p.
|
|
unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|.
|
|
unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
|
|
unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|.
|
|
unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
|
|
unsigned delta = 0;
|
|
do {
|
|
p = p + 1;
|
|
q1 = 2*q1; // Update q1 = 2**p/|nc|.
|
|
r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
|
|
if (r1 >= anc) { // (Must be an unsigned
|
|
q1 = q1 + 1; // comparison here).
|
|
r1 = r1 - anc;}
|
|
q2 = 2*q2; // Update q2 = 2**p/|d|.
|
|
r2 = 2*r2; // Update r2 = rem(2**p, |d|).
|
|
if (r2 >= ad) { // (Must be an unsigned
|
|
q2 = q2 + 1; // comparison here).
|
|
r2 = r2 - ad;}
|
|
delta = ad - r2;
|
|
} while (q1 < delta || (q1 == delta && r1 == 0));
|
|
|
|
magic = (unsigned)(q2 + 1);
|
|
shift = p - 32;
|
|
}
|
|
|
|
uint32_t magic;
|
|
int32_t shift;
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T>& divisor) {
|
|
return divisor.divide(numerator);
|
|
}
|
|
|
|
|
|
} // end namespace internal
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
|