mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-21 12:31:07 +08:00
233 lines
8.5 KiB
C++
233 lines
8.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2022 Julian Kent <jkflying@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSEINVERSE_H
|
|
#define EIGEN_SPARSEINVERSE_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
#include "../../../../Eigen/Sparse"
|
|
#include "../../../../Eigen/SparseLU"
|
|
|
|
namespace Eigen {
|
|
|
|
/**
|
|
* @brief Kahan algorithm based accumulator
|
|
*
|
|
* The Kahan sum algorithm guarantees to bound the error from floating point
|
|
* accumulation to a fixed value, regardless of the number of accumulations
|
|
* performed. Naive accumulation accumulates errors O(N), and pairwise O(logN).
|
|
* However pairwise also requires O(logN) memory while Kahan summation requires
|
|
* O(1) memory, but 4x the operations / latency.
|
|
*
|
|
* NB! Do not enable associative math optimizations, they may cause the Kahan
|
|
* summation to be optimized out leaving you with naive summation again.
|
|
*
|
|
*/
|
|
template <typename Scalar>
|
|
class KahanSum {
|
|
// Straightforward Kahan summation for accurate accumulation of a sum of numbers
|
|
Scalar _sum{};
|
|
Scalar _correction{};
|
|
|
|
public:
|
|
Scalar value() { return _sum; }
|
|
|
|
void operator+=(Scalar increment) {
|
|
const Scalar correctedIncrement = increment + _correction;
|
|
const Scalar previousSum = _sum;
|
|
_sum += correctedIncrement;
|
|
_correction = correctedIncrement - (_sum - previousSum);
|
|
}
|
|
};
|
|
template <typename Scalar, Index Width = 16>
|
|
class FABSum {
|
|
// https://epubs.siam.org/doi/pdf/10.1137/19M1257780
|
|
// Fast and Accurate Blocked Summation
|
|
// Uses naive summation for the fast sum, and Kahan summation for the accurate sum
|
|
// Theoretically SIMD sum could be changed to a tree sum which would improve accuracy
|
|
// over naive summation
|
|
KahanSum<Scalar> _totalSum;
|
|
Matrix<Scalar, Width, 1> _block;
|
|
Index _blockUsed{};
|
|
|
|
public:
|
|
Scalar value() { return _block.topRows(_blockUsed).sum() + _totalSum.value(); }
|
|
|
|
void operator+=(Scalar increment) {
|
|
_block(_blockUsed++, 0) = increment;
|
|
if (_blockUsed == Width) {
|
|
_totalSum += _block.sum();
|
|
_blockUsed = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @brief computes an accurate dot product on two sparse vectors
|
|
*
|
|
* Uses an accurate summation algorithm for the accumulator in order to
|
|
* compute an accurate dot product for two sparse vectors.
|
|
*
|
|
*/
|
|
template <typename Derived, typename OtherDerived>
|
|
typename Derived::Scalar accurateDot(const SparseMatrixBase<Derived>& A, const SparseMatrixBase<OtherDerived>& other) {
|
|
typedef typename Derived::Scalar Scalar;
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
|
|
static_assert(internal::is_same<Scalar, typename OtherDerived::Scalar>::value, "mismatched types");
|
|
|
|
internal::evaluator<Derived> thisEval(A.derived());
|
|
typename Derived::ReverseInnerIterator i(thisEval, 0);
|
|
|
|
internal::evaluator<OtherDerived> otherEval(other.derived());
|
|
typename OtherDerived::ReverseInnerIterator j(otherEval, 0);
|
|
|
|
FABSum<Scalar> res;
|
|
while (i && j) {
|
|
if (i.index() == j.index()) {
|
|
res += numext::conj(i.value()) * j.value();
|
|
--i;
|
|
--j;
|
|
} else if (i.index() > j.index())
|
|
--i;
|
|
else
|
|
--j;
|
|
}
|
|
return res.value();
|
|
}
|
|
|
|
/**
|
|
* @brief calculate sparse subset of inverse of sparse matrix
|
|
*
|
|
* This class returns a sparse subset of the inverse of the input matrix.
|
|
* The nonzeros correspond to the nonzeros of the input, plus any additional
|
|
* elements required due to fill-in of the internal LU factorization. This is
|
|
* is minimized via a applying a fill-reducing permutation as part of the LU
|
|
* factorization.
|
|
*
|
|
* If there are specific entries of the input matrix which you need inverse
|
|
* values for, which are zero for the input, you need to insert entries into
|
|
* the input sparse matrix for them to be calculated.
|
|
*
|
|
* Due to the sensitive nature of matrix inversion, particularly on large
|
|
* matrices which are made possible via sparsity, high accuracy dot products
|
|
* based on Kahan summation are used to reduce numerical error. If you still
|
|
* encounter numerical errors you may with to equilibrate your matrix before
|
|
* calculating the inverse, as well as making sure it is actually full rank.
|
|
*/
|
|
template <typename Scalar>
|
|
class SparseInverse {
|
|
public:
|
|
typedef SparseMatrix<Scalar, ColMajor> MatrixType;
|
|
typedef SparseMatrix<Scalar, RowMajor> RowMatrixType;
|
|
|
|
SparseInverse() {}
|
|
|
|
/**
|
|
* @brief This Constructor is for if you already have a factored SparseLU and would like to use it to calculate a
|
|
* sparse inverse.
|
|
*
|
|
* Just call this constructor with your already factored SparseLU class and you can directly call the .inverse()
|
|
* method to get the result.
|
|
*/
|
|
SparseInverse(const SparseLU<MatrixType>& slu) { _result = computeInverse(slu); }
|
|
|
|
/**
|
|
* @brief Calculate the sparse inverse from a given sparse input
|
|
*/
|
|
SparseInverse& compute(const SparseMatrix<Scalar>& A) {
|
|
SparseLU<MatrixType> slu;
|
|
slu.compute(A);
|
|
_result = computeInverse(slu);
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* @brief return the already-calculated sparse inverse, or a 0x0 matrix if it could not be computed
|
|
*/
|
|
const MatrixType& inverse() const { return _result; }
|
|
|
|
/**
|
|
* @brief Internal function to calculate the sparse inverse in a functional way
|
|
* @return A sparse inverse representation, or, if the decomposition didn't complete, a 0x0 matrix.
|
|
*/
|
|
static MatrixType computeInverse(const SparseLU<MatrixType>& slu) {
|
|
if (slu.info() != Success) {
|
|
return MatrixType(0, 0);
|
|
}
|
|
|
|
// Extract from SparseLU and decompose into L, inverse D and U terms
|
|
Matrix<Scalar, Dynamic, 1> invD;
|
|
RowMatrixType Upper;
|
|
{
|
|
RowMatrixType DU = slu.matrixU().toSparse();
|
|
invD = DU.diagonal().cwiseInverse();
|
|
Upper = (invD.asDiagonal() * DU).template triangularView<StrictlyUpper>();
|
|
}
|
|
MatrixType Lower = slu.matrixL().toSparse().template triangularView<StrictlyLower>();
|
|
|
|
// Compute the inverse and reapply the permutation matrix from the LU decomposition
|
|
return slu.colsPermutation().transpose() * computeInverse(Upper, invD, Lower) * slu.rowsPermutation();
|
|
}
|
|
|
|
/**
|
|
* @brief Internal function to calculate the inverse from strictly upper, diagonal and strictly lower components
|
|
*/
|
|
static MatrixType computeInverse(const RowMatrixType& Upper, const Matrix<Scalar, Dynamic, 1>& inverseDiagonal,
|
|
const MatrixType& Lower) {
|
|
// Calculate the 'minimal set', which is the nonzeros of (L+U).transpose()
|
|
// It could be zeroed, but we will overwrite all non-zeros anyways.
|
|
MatrixType colInv = Lower.transpose().template triangularView<UnitUpper>();
|
|
colInv += Upper.transpose();
|
|
|
|
// We also need rowmajor representation in order to do efficient row-wise dot products
|
|
RowMatrixType rowInv = Upper.transpose().template triangularView<UnitLower>();
|
|
rowInv += Lower.transpose();
|
|
|
|
// Use the Takahashi algorithm to build the supporting elements of the inverse
|
|
// upwards and to the left, from the bottom right element, 1 col/row at a time
|
|
for (Index recurseLevel = Upper.cols() - 1; recurseLevel >= 0; recurseLevel--) {
|
|
const auto& col = Lower.col(recurseLevel);
|
|
const auto& row = Upper.row(recurseLevel);
|
|
|
|
// Calculate the inverse values for the nonzeros in this column
|
|
typename MatrixType::ReverseInnerIterator colIter(colInv, recurseLevel);
|
|
for (; recurseLevel < colIter.index(); --colIter) {
|
|
const Scalar element = -accurateDot(col, rowInv.row(colIter.index()));
|
|
colIter.valueRef() = element;
|
|
rowInv.coeffRef(colIter.index(), recurseLevel) = element;
|
|
}
|
|
|
|
// Calculate the inverse values for the nonzeros in this row
|
|
typename RowMatrixType::ReverseInnerIterator rowIter(rowInv, recurseLevel);
|
|
for (; recurseLevel < rowIter.index(); --rowIter) {
|
|
const Scalar element = -accurateDot(row, colInv.col(rowIter.index()));
|
|
rowIter.valueRef() = element;
|
|
colInv.coeffRef(recurseLevel, rowIter.index()) = element;
|
|
}
|
|
|
|
// And finally the diagonal, which corresponds to both row and col iterator now
|
|
const Scalar diag = inverseDiagonal(recurseLevel) - accurateDot(row, colInv.col(recurseLevel));
|
|
rowIter.valueRef() = diag;
|
|
colIter.valueRef() = diag;
|
|
}
|
|
|
|
return colInv;
|
|
}
|
|
|
|
private:
|
|
MatrixType _result;
|
|
};
|
|
|
|
} // namespace Eigen
|
|
#endif
|