mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 09:09:36 +08:00
374 lines
14 KiB
C++
374 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
|
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
|
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
|
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SVDBASE_H
|
|
#define EIGEN_SVDBASE_H
|
|
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
template<typename Derived> struct traits<SVDBase<Derived> >
|
|
: traits<Derived>
|
|
{
|
|
typedef MatrixXpr XprKind;
|
|
typedef SolverStorage StorageKind;
|
|
typedef int StorageIndex;
|
|
enum { Flags = 0 };
|
|
};
|
|
}
|
|
|
|
/** \ingroup SVD_Module
|
|
*
|
|
*
|
|
* \class SVDBase
|
|
*
|
|
* \brief Base class of SVD algorithms
|
|
*
|
|
* \tparam Derived the type of the actual SVD decomposition
|
|
*
|
|
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
|
* \f[ A = U S V^* \f]
|
|
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
|
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
|
* and right \em singular \em vectors of \a A respectively.
|
|
*
|
|
* Singular values are always sorted in decreasing order.
|
|
*
|
|
*
|
|
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
|
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
|
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
|
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
|
*
|
|
* The status of the computation can be retrieved using the \a info() method. Unless \a info() returns \a Success, the results should be not
|
|
* considered well defined.
|
|
*
|
|
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
|
|
* terminate in finite (and reasonable) time.
|
|
* \sa class BDCSVD, class JacobiSVD
|
|
*/
|
|
template<typename Derived> class SVDBase
|
|
: public SolverBase<SVDBase<Derived> >
|
|
{
|
|
public:
|
|
|
|
template<typename Derived_>
|
|
friend struct internal::solve_assertion;
|
|
|
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
|
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
|
MatrixOptions = MatrixType::Options
|
|
};
|
|
|
|
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
|
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
|
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
|
|
|
Derived& derived() { return *static_cast<Derived*>(this); }
|
|
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
|
|
|
/** \returns the \a U matrix.
|
|
*
|
|
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
|
* the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
|
|
*
|
|
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
|
*
|
|
* This method asserts that you asked for \a U to be computed.
|
|
*/
|
|
const MatrixUType& matrixU() const
|
|
{
|
|
_check_compute_assertions();
|
|
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
|
return m_matrixU;
|
|
}
|
|
|
|
/** \returns the \a V matrix.
|
|
*
|
|
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
|
* the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
|
|
*
|
|
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
|
|
*
|
|
* This method asserts that you asked for \a V to be computed.
|
|
*/
|
|
const MatrixVType& matrixV() const
|
|
{
|
|
_check_compute_assertions();
|
|
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
|
return m_matrixV;
|
|
}
|
|
|
|
/** \returns the vector of singular values.
|
|
*
|
|
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
|
|
* returned vector has size \a m. Singular values are always sorted in decreasing order.
|
|
*/
|
|
const SingularValuesType& singularValues() const
|
|
{
|
|
_check_compute_assertions();
|
|
return m_singularValues;
|
|
}
|
|
|
|
/** \returns the number of singular values that are not exactly 0 */
|
|
Index nonzeroSingularValues() const
|
|
{
|
|
_check_compute_assertions();
|
|
return m_nonzeroSingularValues;
|
|
}
|
|
|
|
/** \returns the rank of the matrix of which \c *this is the SVD.
|
|
*
|
|
* \note This method has to determine which singular values should be considered nonzero.
|
|
* For that, it uses the threshold value that you can control by calling
|
|
* setThreshold(const RealScalar&).
|
|
*/
|
|
inline Index rank() const
|
|
{
|
|
using std::abs;
|
|
_check_compute_assertions();
|
|
if(m_singularValues.size()==0) return 0;
|
|
RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
|
|
Index i = m_nonzeroSingularValues-1;
|
|
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
|
return i+1;
|
|
}
|
|
|
|
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
|
* which need to determine when singular values are to be considered nonzero.
|
|
* This is not used for the SVD decomposition itself.
|
|
*
|
|
* When it needs to get the threshold value, Eigen calls threshold().
|
|
* The default is \c NumTraits<Scalar>::epsilon()
|
|
*
|
|
* \param threshold The new value to use as the threshold.
|
|
*
|
|
* A singular value will be considered nonzero if its value is strictly greater than
|
|
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
|
*
|
|
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
|
*/
|
|
Derived& setThreshold(const RealScalar& threshold)
|
|
{
|
|
m_usePrescribedThreshold = true;
|
|
m_prescribedThreshold = threshold;
|
|
return derived();
|
|
}
|
|
|
|
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
|
* determining the threshold.
|
|
*
|
|
* You should pass the special object Eigen::Default as parameter here.
|
|
* \code svd.setThreshold(Eigen::Default); \endcode
|
|
*
|
|
* See the documentation of setThreshold(const RealScalar&).
|
|
*/
|
|
Derived& setThreshold(Default_t)
|
|
{
|
|
m_usePrescribedThreshold = false;
|
|
return derived();
|
|
}
|
|
|
|
/** Returns the threshold that will be used by certain methods such as rank().
|
|
*
|
|
* See the documentation of setThreshold(const RealScalar&).
|
|
*/
|
|
RealScalar threshold() const
|
|
{
|
|
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
|
// this temporary is needed to workaround a MSVC issue
|
|
Index diagSize = (std::max<Index>)(1,m_diagSize);
|
|
return m_usePrescribedThreshold ? m_prescribedThreshold
|
|
: RealScalar(diagSize)*NumTraits<Scalar>::epsilon();
|
|
}
|
|
|
|
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
|
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
|
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
|
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
|
|
|
inline Index rows() const { return m_rows; }
|
|
inline Index cols() const { return m_cols; }
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
|
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
|
*
|
|
* \param b the right-hand-side of the equation to solve.
|
|
*
|
|
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
|
*
|
|
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
|
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
|
*/
|
|
template<typename Rhs>
|
|
inline const Solve<Derived, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const;
|
|
#endif
|
|
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was successful.
|
|
*/
|
|
EIGEN_DEVICE_FUNC
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename RhsType, typename DstType>
|
|
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
|
|
|
template<bool Conjugate, typename RhsType, typename DstType>
|
|
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
|
|
#endif
|
|
|
|
protected:
|
|
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
|
|
|
void _check_compute_assertions() const {
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
}
|
|
|
|
template<bool Transpose_, typename Rhs>
|
|
void _check_solve_assertion(const Rhs& b) const {
|
|
EIGEN_ONLY_USED_FOR_DEBUG(b);
|
|
_check_compute_assertions();
|
|
eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
|
|
eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
|
|
}
|
|
|
|
// return true if already allocated
|
|
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
|
|
|
MatrixUType m_matrixU;
|
|
MatrixVType m_matrixV;
|
|
SingularValuesType m_singularValues;
|
|
ComputationInfo m_info;
|
|
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
|
bool m_computeFullU, m_computeThinU;
|
|
bool m_computeFullV, m_computeThinV;
|
|
unsigned int m_computationOptions;
|
|
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
|
RealScalar m_prescribedThreshold;
|
|
|
|
/** \brief Default Constructor.
|
|
*
|
|
* Default constructor of SVDBase
|
|
*/
|
|
SVDBase()
|
|
: m_info(Success),
|
|
m_isInitialized(false),
|
|
m_isAllocated(false),
|
|
m_usePrescribedThreshold(false),
|
|
m_computeFullU(false),
|
|
m_computeThinU(false),
|
|
m_computeFullV(false),
|
|
m_computeThinV(false),
|
|
m_computationOptions(0),
|
|
m_rows(-1), m_cols(-1), m_diagSize(0)
|
|
{ }
|
|
|
|
|
|
};
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename Derived>
|
|
template<typename RhsType, typename DstType>
|
|
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
|
{
|
|
// A = U S V^*
|
|
// So A^{-1} = V S^{-1} U^*
|
|
|
|
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
|
Index l_rank = rank();
|
|
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
|
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
|
dst = m_matrixV.leftCols(l_rank) * tmp;
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<bool Conjugate, typename RhsType, typename DstType>
|
|
void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
|
{
|
|
// A = U S V^*
|
|
// So A^{-*} = U S^{-1} V^*
|
|
// And A^{-T} = U_conj S^{-1} V^T
|
|
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
|
Index l_rank = rank();
|
|
|
|
tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs;
|
|
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
|
dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp;
|
|
}
|
|
#endif
|
|
|
|
template<typename MatrixType>
|
|
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
|
{
|
|
eigen_assert(rows >= 0 && cols >= 0);
|
|
|
|
if (m_isAllocated &&
|
|
rows == m_rows &&
|
|
cols == m_cols &&
|
|
computationOptions == m_computationOptions)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
m_rows = rows;
|
|
m_cols = cols;
|
|
m_info = Success;
|
|
m_isInitialized = false;
|
|
m_isAllocated = true;
|
|
m_computationOptions = computationOptions;
|
|
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
|
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
|
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
|
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
|
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
|
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
|
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
|
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
|
|
|
m_diagSize = (std::min)(m_rows, m_cols);
|
|
m_singularValues.resize(m_diagSize);
|
|
if(RowsAtCompileTime==Dynamic)
|
|
m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
|
|
if(ColsAtCompileTime==Dynamic)
|
|
m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
|
|
|
|
return false;
|
|
}
|
|
|
|
}// end namespace
|
|
|
|
#endif // EIGEN_SVDBASE_H
|