eigen/Eigen/src/Core/MatrixBase.h
2010-02-01 11:44:44 +01:00

423 lines
17 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
/** \class MatrixBase
*
* \brief Base class for all dense matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and related expression
* types. Most of the Eigen API is contained in this class, and its base classes. Other important
* classes for the Eigen API are Matrix, and VectorwiseOp.
*
* Note that some methods are defined in the \ref Array_Module array module.
*
* \param Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*/
template<typename Derived> class MatrixBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef MatrixBase StorageBaseType;
/** Construct the base class type for the derived class OtherDerived */
template <typename OtherDerived> struct MakeBase { typedef MatrixBase<OtherDerived> Type; };
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::_HasDirectAccess;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
typedef typename Base::RowXpr RowXpr;
typedef typename Base::ColXpr ColXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the size of the main diagonal, which is min(rows(),cols()).
* \sa rows(), cols(), SizeAtCompileTime. */
inline int diagonalSize() const { return std::min(rows(),cols()); }
/** \brief The plain matrix type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainMatrixType or const PlainMatrixType&.
*/
typedef Matrix<typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime,
AutoAlign | (ei_traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
ei_traits<Derived>::MaxRowsAtCompileTime,
ei_traits<Derived>::MaxColsAtCompileTime
> PlainMatrixType;
// typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<Derived> >,
Transpose<Derived>
>::ret AdjointReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<CwiseNullaryOp<ei_scalar_identity_op<Scalar>, SquareMatrixType>,
ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime> BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# ifdef EIGEN_MATRIXBASE_PLUGIN
# include EIGEN_MATRIXBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const MatrixBase& other);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
const CoeffReturnType x() const;
const CoeffReturnType y() const;
const CoeffReturnType z() const;
const CoeffReturnType w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
const typename ProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator*=(const AnyMatrixBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheLeft(const AnyMatrixBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheRight(const AnyMatrixBase<OtherDerived>& other);
template<typename DiagonalDerived>
const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const;
RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
RealScalar hypotNorm() const;
const PlainMatrixType normalized() const;
void normalize();
const AdjointReturnType adjoint() const;
void adjointInPlace();
Minor<Derived> minor(int row, int col);
const Minor<Derived> minor(int row, int col) const;
Diagonal<Derived,0> diagonal();
const Diagonal<Derived,0> diagonal() const;
template<int Index> Diagonal<Derived,Index> diagonal();
template<int Index> const Diagonal<Derived,Index> diagonal() const;
Diagonal<Derived, Dynamic> diagonal(int index);
const Diagonal<Derived, Dynamic> diagonal(int index) const;
template<unsigned int Mode> TriangularView<Derived, Mode> part();
template<unsigned int Mode> const TriangularView<Derived, Mode> part() const;
template<unsigned int Mode> TriangularView<Derived, Mode> triangularView();
template<unsigned int Mode> const TriangularView<Derived, Mode> triangularView() const;
template<unsigned int UpLo> SelfAdjointView<Derived, UpLo> selfadjointView();
template<unsigned int UpLo> const SelfAdjointView<Derived, UpLo> selfadjointView() const;
static const IdentityReturnType Identity();
static const IdentityReturnType Identity(int rows, int cols);
static const BasisReturnType Unit(int size, int i);
static const BasisReturnType Unit(int i);
static const BasisReturnType UnitX();
static const BasisReturnType UnitY();
static const BasisReturnType UnitZ();
static const BasisReturnType UnitW();
const DiagonalWrapper<Derived> asDiagonal() const;
Derived& setIdentity();
Derived& setIdentity(int rows, int cols);
bool isIdentity(RealScalar prec = dummy_precision<Scalar>()) const;
bool isDiagonal(RealScalar prec = dummy_precision<Scalar>()) const;
bool isUpperTriangular(RealScalar prec = dummy_precision<Scalar>()) const;
bool isLowerTriangular(RealScalar prec = dummy_precision<Scalar>()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const;
bool isUnitary(RealScalar prec = dummy_precision<Scalar>()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template<typename OtherDerived>
inline bool operator==(const MatrixBase<OtherDerived>& other) const
{ return cwiseEqual(other).all(); }
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template<typename OtherDerived>
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
{ return cwiseNotEqual(other).any(); }
NoAlias<Derived,Eigen::MatrixBase > noalias();
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline const typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret forceAlignedAccessIf() const;
template<bool Enable> inline typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret forceAlignedAccessIf();
Scalar trace() const;
/////////// Array module ///////////
template<int p> RealScalar lpNorm() const;
MatrixBase<Derived>& matrix() { return *this; }
const MatrixBase<Derived>& matrix() const { return *this; }
ArrayWrapper<Derived> array() { return derived(); }
const ArrayWrapper<Derived> array() const { return derived(); }
/////////// LU module ///////////
const FullPivLU<PlainMatrixType> fullPivLu() const;
const PartialPivLU<PlainMatrixType> partialPivLu() const;
const PartialPivLU<PlainMatrixType> lu() const;
const ei_inverse_impl<Derived> inverse() const;
template<typename ResultType>
void computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = dummy_precision<Scalar>()
) const;
template<typename ResultType>
void computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold = dummy_precision<Scalar>()
) const;
Scalar determinant() const;
/////////// Cholesky module ///////////
const LLT<PlainMatrixType> llt() const;
const LDLT<PlainMatrixType> ldlt() const;
/////////// QR module ///////////
const HouseholderQR<PlainMatrixType> householderQr() const;
const ColPivHouseholderQR<PlainMatrixType> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainMatrixType> fullPivHouseholderQr() const;
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
/////////// SVD module ///////////
SVD<PlainMatrixType> svd() const;
/////////// Geometry module ///////////
template<typename OtherDerived>
PlainMatrixType cross(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
PlainMatrixType cross3(const MatrixBase<OtherDerived>& other) const;
PlainMatrixType unitOrthogonal(void) const;
Matrix<Scalar,3,1> eulerAngles(int a0, int a1, int a2) const;
const ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
typedef Block<Derived,
ei_traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
ei_traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>,
StartMinusOne > HNormalizedReturnType;
const HNormalizedReturnType hnormalized() const;
typedef Homogeneous<Derived,MatrixBase<Derived>::ColsAtCompileTime==1?Vertical:Horizontal> HomogeneousReturnType;
const HomogeneousReturnType homogeneous() const;
////////// Householder module ///////////
void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
template<typename EssentialPart>
void makeHouseholder(EssentialPart& essential,
Scalar& tau, RealScalar& beta) const;
template<typename EssentialPart>
void applyHouseholderOnTheLeft(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
template<typename EssentialPart>
void applyHouseholderOnTheRight(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
///////// Jacobi module /////////
template<typename OtherScalar>
void applyOnTheLeft(int p, int q, const PlanarRotation<OtherScalar>& j);
template<typename OtherScalar>
void applyOnTheRight(int p, int q, const PlanarRotation<OtherScalar>& j);
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
/** \deprecated because .lazy() is deprecated
* Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
inline const Cwise<Derived> cwise() const;
inline Cwise<Derived> cwise();
VectorBlock<Derived> start(int size);
const VectorBlock<Derived> start(int size) const;
VectorBlock<Derived> end(int size);
const VectorBlock<Derived> end(int size) const;
template<int Size> VectorBlock<Derived,Size> start();
template<int Size> const VectorBlock<Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<Derived,Size> end() const;
#endif
protected:
MatrixBase() : Base() {}
private:
explicit MatrixBase(int);
MatrixBase(int,int);
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
};
#endif // EIGEN_MATRIXBASE_H