eigen/unsupported/test/cxx11_tensor_reduction_sycl.cpp

148 lines
4.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
static void test_full_reductions_sycl() {
cl::sycl::gpu_selector s;
cl::sycl::queue q(s, [=](cl::sycl::exception_list l) {
for (const auto& e : l) {
try {
std::rethrow_exception(e);
} catch (cl::sycl::exception e) {
std::cout << e.what() << std::endl;
}
}
});
Eigen::SyclDevice sycl_device(q);
const int num_rows = 452;
const int num_cols = 765;
array<int, 2> tensorRange = {{num_rows, num_cols}};
Tensor<float, 2> in(tensorRange);
in.setRandom();
Tensor<float, 0> full_redux;
Tensor<float, 0> full_redux_g;
full_redux = in.sum();
float* out_data = (float*)sycl_device.allocate(sizeof(float));
TensorMap<Tensor<float, 2> > in_gpu(in.data(), tensorRange);
TensorMap<Tensor<float, 0> > full_redux_gpu(out_data);
full_redux_gpu.device(sycl_device) = in_gpu.sum();
sycl_device.deallocate(out_data);
// Check that the CPU and GPU reductions return the same result.
VERIFY_IS_APPROX(full_redux_gpu(), full_redux());
}
static void test_first_dim_reductions_sycl() {
cl::sycl::gpu_selector s;
cl::sycl::queue q(s, [=](cl::sycl::exception_list l) {
for (const auto& e : l) {
try {
std::rethrow_exception(e);
} catch (cl::sycl::exception e) {
std::cout << e.what() << std::endl;
}
}
});
Eigen::SyclDevice sycl_device(q);
int dim_x = 145;
int dim_y = 1;
int dim_z = 67;
array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
Tensor<float, 3> in(tensorRange);
in.setRandom();
Eigen::array<int, 1> red_axis;
red_axis[0] = 0;
Tensor<float, 2> redux = in.sum(red_axis);
array<int, 2> reduced_tensorRange = {{dim_y, dim_z}};
Tensor<float, 2> redux_g(reduced_tensorRange);
TensorMap<Tensor<float, 3> > in_gpu(in.data(), tensorRange);
float* out_data = (float*)sycl_device.allocate(dim_y*dim_z*sizeof(float));
TensorMap<Tensor<float, 2> > redux_gpu(out_data, dim_y, dim_z );
redux_gpu.device(sycl_device) = in_gpu.sum(red_axis);
sycl_device.deallocate(out_data);
// Check that the CPU and GPU reductions return the same result.
for(int j=0; j<dim_y; j++ )
for(int k=0; k<dim_z; k++ )
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
}
static void test_last_dim_reductions_sycl() {
cl::sycl::gpu_selector s;
cl::sycl::queue q(s, [=](cl::sycl::exception_list l) {
for (const auto& e : l) {
try {
std::rethrow_exception(e);
} catch (cl::sycl::exception e) {
std::cout << e.what() << std::endl;
}
}
});
Eigen::SyclDevice sycl_device(q);
int dim_x = 567;
int dim_y = 1;
int dim_z = 47;
array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
Tensor<float, 3> in(tensorRange);
in.setRandom();
Eigen::array<int, 1> red_axis;
red_axis[0] = 2;
Tensor<float, 2> redux = in.sum(red_axis);
array<int, 2> reduced_tensorRange = {{dim_x, dim_y}};
Tensor<float, 2> redux_g(reduced_tensorRange);
TensorMap<Tensor<float, 3> > in_gpu(in.data(), tensorRange);
float* out_data = (float*)sycl_device.allocate(dim_x*dim_y*sizeof(float));
TensorMap<Tensor<float, 2> > redux_gpu(out_data, dim_x, dim_y );
redux_gpu.device(sycl_device) = in_gpu.sum(red_axis);
sycl_device.deallocate(out_data);
// Check that the CPU and GPU reductions return the same result.
for(int j=0; j<dim_x; j++ )
for(int k=0; k<dim_y; k++ )
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
}
void test_cxx11_tensor_reduction_sycl() {
CALL_SUBTEST((test_full_reductions_sycl()));
CALL_SUBTEST((test_first_dim_reductions_sycl()));
CALL_SUBTEST((test_last_dim_reductions_sycl()));
}