eigen/src/Core/MatrixOps.h

246 lines
7.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EI_MATRIXOPS_H
#define EI_MATRIXOPS_H
template<typename Lhs, typename Rhs> class Sum
: public Object<typename Lhs::Scalar, Sum<Lhs, Rhs> >
{
public:
typedef typename Lhs::Scalar Scalar;
typedef typename Lhs::ConstRef LhsRef;
typedef typename Rhs::ConstRef RhsRef;
friend class Object<Scalar, Sum>;
static const int RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime;
Sum(const LhsRef& lhs, const RhsRef& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
}
Sum(const Sum& other)
: m_lhs(other.m_lhs), m_rhs(other.m_rhs) {}
EI_INHERIT_ASSIGNMENT_OPERATORS(Sum)
private:
const Sum& _ref() const { return *this; }
const Sum& _constRef() const { return *this; }
int _rows() const { return m_lhs.rows(); }
int _cols() const { return m_lhs.cols(); }
Scalar _read(int row, int col) const
{
return m_lhs.read(row, col) + m_rhs.read(row, col);
}
protected:
const LhsRef m_lhs;
const RhsRef m_rhs;
};
template<typename Lhs, typename Rhs> class Difference
: public Object<typename Lhs::Scalar, Difference<Lhs, Rhs> >
{
public:
typedef typename Lhs::Scalar Scalar;
typedef typename Lhs::ConstRef LhsRef;
typedef typename Rhs::ConstRef RhsRef;
friend class Object<Scalar, Difference>;
static const int RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime;
Difference(const LhsRef& lhs, const RhsRef& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
}
Difference(const Difference& other)
: m_lhs(other.m_lhs), m_rhs(other.m_rhs) {}
EI_INHERIT_ASSIGNMENT_OPERATORS(Difference)
private:
const Difference& _ref() const { return *this; }
const Difference& _constRef() const { return *this; }
int _rows() const { return m_lhs.rows(); }
int _cols() const { return m_lhs.cols(); }
Scalar _read(int row, int col) const
{
return m_lhs.read(row, col) - m_rhs.read(row, col);
}
protected:
const LhsRef m_lhs;
const RhsRef m_rhs;
};
template<int Index, int Size, typename Lhs, typename Rhs>
struct MatrixProductUnroller
{
static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
MatrixProductUnroller<Index-1, Size, Lhs, Rhs>::run(row, col, lhs, rhs, res);
res += lhs.read(row, Index) * rhs.read(Index, col);
}
};
template<int Size, typename Lhs, typename Rhs>
struct MatrixProductUnroller<0, Size, Lhs, Rhs>
{
static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
res = lhs.read(row, 0) * rhs.read(0, col);
}
};
template<int Index, typename Lhs, typename Rhs>
struct MatrixProductUnroller<Index, Dynamic, Lhs, Rhs>
{
static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
EI_UNUSED(row);
EI_UNUSED(col);
EI_UNUSED(lhs);
EI_UNUSED(rhs);
EI_UNUSED(res);
}
};
template<typename Lhs, typename Rhs> class MatrixProduct
: public Object<typename Lhs::Scalar, MatrixProduct<Lhs, Rhs> >
{
public:
typedef typename Lhs::Scalar Scalar;
typedef typename Lhs::ConstRef LhsRef;
typedef typename Rhs::ConstRef RhsRef;
friend class Object<Scalar, MatrixProduct>;
static const int RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime;
MatrixProduct(const LhsRef& lhs, const RhsRef& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
assert(lhs.cols() == rhs.rows());
}
MatrixProduct(const MatrixProduct& other)
: m_lhs(other.m_lhs), m_rhs(other.m_rhs) {}
EI_INHERIT_ASSIGNMENT_OPERATORS(MatrixProduct)
private:
const MatrixProduct& _ref() const { return *this; }
const MatrixProduct& _constRef() const { return *this; }
int _rows() const { return m_lhs.rows(); }
int _cols() const { return m_rhs.cols(); }
Scalar _read(int row, int col) const
{
Scalar res;
if(Lhs::ColsAtCompileTime != Dynamic && Lhs::ColsAtCompileTime <= 16)
MatrixProductUnroller<Lhs::ColsAtCompileTime-1, Lhs::ColsAtCompileTime, LhsRef, RhsRef>
::run(row, col, m_lhs, m_rhs, res);
else
{
res = m_lhs(row, 0) * m_rhs(0, col);
for(int i = 1; i < m_lhs.cols(); i++)
res += m_lhs(row, i) * m_rhs(i, col);
}
return res;
}
protected:
const LhsRef m_lhs;
const RhsRef m_rhs;
};
template<typename Scalar, typename Derived1, typename Derived2>
Sum<Derived1, Derived2>
operator+(const Object<Scalar, Derived1> &mat1, const Object<Scalar, Derived2> &mat2)
{
return Sum<Derived1, Derived2>(mat1.constRef(), mat2.constRef());
}
template<typename Scalar, typename Derived1, typename Derived2>
Difference<Derived1, Derived2>
operator-(const Object<Scalar, Derived1> &mat1, const Object<Scalar, Derived2> &mat2)
{
return Difference<Derived1, Derived2>(mat1.constRef(), mat2.constRef());
}
template<typename Scalar, typename Derived>
template<typename OtherDerived>
MatrixProduct<Derived, OtherDerived>
Object<Scalar, Derived>::lazyProduct(const Object<Scalar, OtherDerived> &other) const
{
return MatrixProduct<Derived, OtherDerived>(constRef(), other.constRef());
}
template<typename Scalar, typename Derived1, typename Derived2>
Eval<MatrixProduct<Derived1, Derived2> >
operator*(const Object<Scalar, Derived1> &mat1, const Object<Scalar, Derived2> &mat2)
{
return mat1.lazyProduct(mat2).eval();
}
template<typename Scalar, typename Derived>
template<typename OtherDerived>
Derived &
Object<Scalar, Derived>::operator+=(const Object<Scalar, OtherDerived>& other)
{
return *this = *this + other;
}
template<typename Scalar, typename Derived>
template<typename OtherDerived>
Derived &
Object<Scalar, Derived>::operator-=(const Object<Scalar, OtherDerived> &other)
{
return *this = *this - other;
}
template<typename Scalar, typename Derived>
template<typename OtherDerived>
Derived &
Object<Scalar, Derived>::operator*=(const Object<Scalar, OtherDerived> &other)
{
return *this = *this * other;
}
#endif // EI_MATRIXOPS_H