eigen/Eigen/src/Core/Util.h
Gael Guennebaud 138aad0ed0 * coefficient wise operators are more generic, with controllable result type.
- compatible with current STL's functors as well as with the extention proposal (TR1)
 * thanks to the above, Cast and ScalarMultiple have been removed
 * benchmark_suite is more flexible (compiler and matrix size)
2008-03-06 11:36:27 +00:00

205 lines
7.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_UTIL_H
#define EIGEN_UTIL_H
#ifdef EIGEN_DONT_USE_UNROLLED_LOOPS
#define EIGEN_UNROLLED_LOOPS (false)
#else
#define EIGEN_UNROLLED_LOOPS (true)
#endif
/** Defines the maximal loop size (i.e., the matrix size NxM) to enable
* meta unrolling of operator=.
*/
#ifndef EIGEN_UNROLLING_LIMIT_OPEQUAL
#define EIGEN_UNROLLING_LIMIT_OPEQUAL 25
#endif
/** Defines the maximal loop size to enable meta unrolling
* of the matrix product, dot product and trace.
*/
#ifndef EIGEN_UNROLLING_LIMIT_PRODUCT
#define EIGEN_UNROLLING_LIMIT_PRODUCT 16
#endif
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER RowMajor
#else
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER ColumnMajor
#endif
#undef minor
#define USING_PART_OF_NAMESPACE_EIGEN \
EIGEN_USING_MATRIX_TYPEDEFS \
using Eigen::Matrix; \
using Eigen::MatrixBase;
#ifdef EIGEN_INTERNAL_DEBUGGING
#define eigen_internal_assert(x) assert(x);
#else
#define eigen_internal_assert(x)
#endif
#ifdef NDEBUG
#define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x
#else
#define EIGEN_ONLY_USED_FOR_DEBUG(x)
#endif
// FIXME with the always_inline attribute,
// gcc 3.4.x reports the following compilation error:
// Eval.h:91: sorry, unimplemented: inlining failed in call to 'const Eigen::Eval<Derived> Eigen::MatrixBase<Scalar, Derived>::eval() const'
// : function body not available
#if (defined __GNUC__) && (__GNUC__!=3)
#define EIGEN_ALWAYS_INLINE __attribute__((always_inline))
#else
#define EIGEN_ALWAYS_INLINE
#endif
#define EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename OtherScalar, typename OtherDerived> \
Derived& operator Op(const MatrixBase<OtherScalar, OtherDerived>& other) \
{ \
return Base::operator Op(other); \
} \
Derived& operator Op(const Derived& other) \
{ \
return Base::operator Op(other); \
}
#define EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename Other> \
Derived& operator Op(const Other& scalar) \
{ \
return Base::operator Op(scalar); \
}
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
#define EIGEN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b)
const int Dynamic = -10;
const int ColumnMajor = 0;
const int RowMajor = 1;
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
struct EiEmptyStruct{char _ei_dummy_;};
#define EIGEN_EMPTY_STRUCT : Eigen::EiEmptyStruct
#else
#define EIGEN_EMPTY_STRUCT
#endif
//classes inheriting NoOperatorEquals don't generate a default operator=.
class NoOperatorEquals
{
private:
NoOperatorEquals& operator=(const NoOperatorEquals&);
};
template<int Value> class IntAtRunTimeIfDynamic EIGEN_EMPTY_STRUCT
{
public:
IntAtRunTimeIfDynamic() {}
explicit IntAtRunTimeIfDynamic(int) {}
static int value() { return Value; }
void setValue(int) {}
};
template<> class IntAtRunTimeIfDynamic<Dynamic>
{
int m_value;
IntAtRunTimeIfDynamic() {}
public:
explicit IntAtRunTimeIfDynamic(int value) : m_value(value) {}
int value() const { return m_value; }
void setValue(int value) { m_value = value; }
};
struct ei_has_nothing {int a[1];};
struct ei_has_std_result_type {int a[2];};
struct ei_has_tr1_result {int a[3];};
/** Convenient struct to get the result type of a unary or binary functor.
*
* It supports both the current STL mechanism (using the result_type member) as well as
* upcoming next STL generation (using a templated result member).
* If none of these member is provided, then the type of the first argument is returned.
*/
template<typename T> struct ei_result_of {};
template<typename Func, typename ArgType, int SizeOf=sizeof(ei_has_nothing)>
struct ei_unary_result_of_select {typedef ArgType type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct ei_result_of<Func(ArgType)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static ei_has_nothing testFunctor(...);
typedef typename ei_unary_result_of_select<Func, ArgType, sizeof(testFunctor(static_cast<Func*>(0)))>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(ei_has_nothing)>
struct ei_binary_result_of_select {typedef ArgType0 type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static ei_has_nothing testFunctor(...);
typedef typename ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(testFunctor(static_cast<Func*>(0)))>::type type;
};
#endif // EIGEN_UTIL_H