eigen/lapack/svd.inc
2024-02-12 19:36:07 +00:00

145 lines
4.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "lapack_common.h"
#include <Eigen/SVD>
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
EIGEN_LAPACK_FUNC(gesdd, (char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu,
Scalar *vt, int *ldvt, Scalar * /*work*/, int *lwork,
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info)) {
// TODO exploit the work buffer
bool query_size = *lwork == -1;
int diag_size = (std::min)(*m, *n);
*info = 0;
if (*jobz != 'A' && *jobz != 'S' && *jobz != 'O' && *jobz != 'N')
*info = -1;
else if (*m < 0)
*info = -2;
else if (*n < 0)
*info = -3;
else if (*lda < std::max(1, *m))
*info = -5;
else if (*lda < std::max(1, *m))
*info = -8;
else if (*ldu < 1 || (*jobz == 'A' && *ldu < *m) || (*jobz == 'O' && *m < *n && *ldu < *m))
*info = -8;
else if (*ldvt < 1 || (*jobz == 'A' && *ldvt < *n) || (*jobz == 'S' && *ldvt < diag_size) ||
(*jobz == 'O' && *m >= *n && *ldvt < *n))
*info = -10;
if (*info != 0) {
int e = -*info;
return xerbla_(SCALAR_SUFFIX_UP "GESDD ", &e, 6);
}
if (query_size) {
*lwork = 0;
return 0;
}
if (*n == 0 || *m == 0) return 0;
PlainMatrixType mat(*m, *n);
mat = matrix(a, *m, *n, *lda);
int option = *jobz == 'A' ? ComputeFullU | ComputeFullV
: *jobz == 'S' ? ComputeThinU | ComputeThinV
: *jobz == 'O' ? ComputeThinU | ComputeThinV
: 0;
BDCSVD<PlainMatrixType> svd(mat, option);
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
if (*jobz == 'A') {
matrix(u, *m, *m, *ldu) = svd.matrixU();
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'S') {
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'O' && *m >= *n) {
matrix(a, *m, *n, *lda) = svd.matrixU();
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'O') {
matrix(u, *m, *m, *ldu) = svd.matrixU();
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
}
return 0;
}
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
EIGEN_LAPACK_FUNC(gesvd, (char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u,
int *ldu, Scalar *vt, int *ldvt, Scalar * /*work*/, int *lwork,
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info)) {
// TODO exploit the work buffer
bool query_size = *lwork == -1;
int diag_size = (std::min)(*m, *n);
*info = 0;
if (*jobu != 'A' && *jobu != 'S' && *jobu != 'O' && *jobu != 'N')
*info = -1;
else if ((*jobv != 'A' && *jobv != 'S' && *jobv != 'O' && *jobv != 'N') || (*jobu == 'O' && *jobv == 'O'))
*info = -2;
else if (*m < 0)
*info = -3;
else if (*n < 0)
*info = -4;
else if (*lda < std::max(1, *m))
*info = -6;
else if (*ldu < 1 || ((*jobu == 'A' || *jobu == 'S') && *ldu < *m))
*info = -9;
else if (*ldvt < 1 || (*jobv == 'A' && *ldvt < *n) || (*jobv == 'S' && *ldvt < diag_size))
*info = -11;
if (*info != 0) {
int e = -*info;
return xerbla_(SCALAR_SUFFIX_UP "GESVD ", &e, 6);
}
if (query_size) {
*lwork = 0;
return 0;
}
if (*n == 0 || *m == 0) return 0;
PlainMatrixType mat(*m, *n);
mat = matrix(a, *m, *n, *lda);
int option = (*jobu == 'A' ? ComputeFullU
: *jobu == 'S' || *jobu == 'O' ? ComputeThinU
: 0) |
(*jobv == 'A' ? ComputeFullV
: *jobv == 'S' || *jobv == 'O' ? ComputeThinV
: 0);
JacobiSVD<PlainMatrixType> svd(mat, option);
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
{
if (*jobu == 'A')
matrix(u, *m, *m, *ldu) = svd.matrixU();
else if (*jobu == 'S')
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
else if (*jobu == 'O')
matrix(a, *m, diag_size, *lda) = svd.matrixU();
}
{
if (*jobv == 'A')
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
else if (*jobv == 'S')
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
else if (*jobv == 'O')
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
}
return 0;
}