mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-12 07:49:02 +08:00

* enable complex support for the CHOLMOD LLT backend using CHOLMOD's triangular solver * quick fix for complex support in SparseLLT::solve
206 lines
6.9 KiB
C++
206 lines
6.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSELLT_H
|
|
#define EIGEN_SPARSELLT_H
|
|
|
|
/** \ingroup Sparse_Module
|
|
*
|
|
* \class SparseLLT
|
|
*
|
|
* \brief LLT Cholesky decomposition of a sparse matrix and associated features
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
|
|
*
|
|
* \sa class LLT, class LDLT
|
|
*/
|
|
template<typename MatrixType, int Backend = DefaultBackend>
|
|
class SparseLLT
|
|
{
|
|
protected:
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef SparseMatrix<Scalar,LowerTriangular> CholMatrixType;
|
|
|
|
enum {
|
|
SupernodalFactorIsDirty = 0x10000,
|
|
MatrixLIsDirty = 0x20000
|
|
};
|
|
|
|
public:
|
|
|
|
/** Creates a dummy LLT factorization object with flags \a flags. */
|
|
SparseLLT(int flags = 0)
|
|
: m_flags(flags), m_status(0)
|
|
{
|
|
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
|
}
|
|
|
|
/** Creates a LLT object and compute the respective factorization of \a matrix using
|
|
* flags \a flags. */
|
|
SparseLLT(const MatrixType& matrix, int flags = 0)
|
|
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
|
{
|
|
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
|
compute(matrix);
|
|
}
|
|
|
|
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
|
*
|
|
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
|
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
|
* useful to initialize an iterative solver.
|
|
*
|
|
* \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
|
|
* even if the matrix is positive definite.
|
|
*
|
|
* Note that the exact meaning of this parameter might depends on the actual
|
|
* backend. Moreover, not all backends support this feature.
|
|
*
|
|
* \sa precision() */
|
|
void setPrecision(RealScalar v) { m_precision = v; }
|
|
|
|
/** \returns the current precision.
|
|
*
|
|
* \sa setPrecision() */
|
|
RealScalar precision() const { return m_precision; }
|
|
|
|
/** Sets the flags. Possible values are:
|
|
* - CompleteFactorization
|
|
* - IncompleteFactorization
|
|
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
|
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
|
* overloads the MemoryEfficient flags)
|
|
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
|
* overloads the MemoryEfficient flags)
|
|
*
|
|
* \sa flags() */
|
|
void setFlags(int f) { m_flags = f; }
|
|
/** \returns the current flags */
|
|
int flags() const { return m_flags; }
|
|
|
|
/** Computes/re-computes the LLT factorization */
|
|
void compute(const MatrixType& matrix);
|
|
|
|
/** \returns the lower triangular matrix L */
|
|
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
|
|
|
template<typename Derived>
|
|
bool solveInPlace(MatrixBase<Derived> &b) const;
|
|
|
|
/** \returns true if the factorization succeeded */
|
|
inline bool succeeded(void) const { return m_succeeded; }
|
|
|
|
protected:
|
|
CholMatrixType m_matrix;
|
|
RealScalar m_precision;
|
|
int m_flags;
|
|
mutable int m_status;
|
|
bool m_succeeded;
|
|
};
|
|
|
|
/** Computes / recomputes the LLT decomposition of matrix \a a
|
|
* using the default algorithm.
|
|
*/
|
|
template<typename MatrixType, int Backend>
|
|
void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
|
|
{
|
|
assert(a.rows()==a.cols());
|
|
const int size = a.rows();
|
|
m_matrix.resize(size, size);
|
|
|
|
// allocate a temporary vector for accumulations
|
|
AmbiVector<Scalar> tempVector(size);
|
|
RealScalar density = a.nonZeros()/RealScalar(size*size);
|
|
|
|
// TODO estimate the number of non zeros
|
|
m_matrix.startFill(a.nonZeros()*2);
|
|
for (int j = 0; j < size; ++j)
|
|
{
|
|
Scalar x = ei_real(a.coeff(j,j));
|
|
|
|
// TODO better estimate of the density !
|
|
tempVector.init(density>0.001? IsDense : IsSparse);
|
|
tempVector.setBounds(j+1,size);
|
|
tempVector.setZero();
|
|
// init with current matrix a
|
|
{
|
|
typename MatrixType::InnerIterator it(a,j);
|
|
++it; // skip diagonal element
|
|
for (; it; ++it)
|
|
tempVector.coeffRef(it.index()) = it.value();
|
|
}
|
|
for (int k=0; k<j+1; ++k)
|
|
{
|
|
typename CholMatrixType::InnerIterator it(m_matrix, k);
|
|
while (it && it.index()<j)
|
|
++it;
|
|
if (it && it.index()==j)
|
|
{
|
|
Scalar y = it.value();
|
|
x -= ei_abs2(y);
|
|
++it; // skip j-th element, and process remaining column coefficients
|
|
tempVector.restart();
|
|
for (; it; ++it)
|
|
{
|
|
tempVector.coeffRef(it.index()) -= it.value() * y;
|
|
}
|
|
}
|
|
}
|
|
// copy the temporary vector to the respective m_matrix.col()
|
|
// while scaling the result by 1/real(x)
|
|
RealScalar rx = ei_sqrt(ei_real(x));
|
|
m_matrix.fill(j,j) = rx;
|
|
Scalar y = Scalar(1)/rx;
|
|
for (typename AmbiVector<Scalar>::Iterator it(tempVector, m_precision*rx); it; ++it)
|
|
{
|
|
m_matrix.fill(it.index(), j) = it.value() * y;
|
|
}
|
|
}
|
|
m_matrix.endFill();
|
|
}
|
|
|
|
/** Computes b = L^-T L^-1 b */
|
|
template<typename MatrixType, int Backend>
|
|
template<typename Derived>
|
|
bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
|
{
|
|
const int size = m_matrix.rows();
|
|
ei_assert(size==b.rows());
|
|
|
|
m_matrix.solveTriangularInPlace(b);
|
|
// FIXME should be simply .adjoint() but it fails to compile...
|
|
if (NumTraits<Scalar>::IsComplex)
|
|
{
|
|
CholMatrixType aux = m_matrix.conjugate();
|
|
aux.transpose().solveTriangularInPlace(b);
|
|
}
|
|
else
|
|
m_matrix.transpose().solveTriangularInPlace(b);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // EIGEN_SPARSELLT_H
|