eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
Jitse Niesen 2026ea7ff2 Coax doxygen in producing better docs for MatrixFunctions.
The //@{ ... //@} in unsupported/Eigen/MatrixFunctions for some reason
caused doxygen to list the constructor of the MatrixExponential class
as a separate function in the MatrixFunctions module without any reference
to the class; very confusing.
2009-12-11 15:54:21 +00:00

328 lines
11 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL
#ifdef _MSC_VER
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
#endif
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix exponential.
*
* \param M matrix whose exponential is to be computed.
* \param result pointer to the matrix in which to store the result.
*
* The matrix exponential of \f$ M \f$ is defined by
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
* The matrix exponential can be used to solve linear ordinary
* differential equations: the solution of \f$ y' = My \f$ with the
* initial condition \f$ y(0) = y_0 \f$ is given by
* \f$ y(t) = \exp(M) y_0 \f$.
*
* The cost of the computation is approximately \f$ 20 n^3 \f$ for
* matrices of size \f$ n \f$. The number 20 depends weakly on the
* norm of the matrix.
*
* The matrix exponential is computed using the scaling-and-squaring
* method combined with Pad&eacute; approximation. The matrix is first
* rescaled, then the exponential of the reduced matrix is computed
* approximant, and then the rescaling is undone by repeated
* squaring. The degree of the Pad&eacute; approximant is chosen such
* that the approximation error is less than the round-off
* error. However, errors may accumulate during the squaring phase.
*
* Details of the algorithm can be found in: Nicholas J. Higham, "The
* scaling and squaring method for the matrix exponential revisited,"
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
* 2005.
*
* Example: The following program checks that
* \f[ \exp \left[ \begin{array}{ccc}
* 0 & \frac14\pi & 0 \\
* -\frac14\pi & 0 & 0 \\
* 0 & 0 & 0
* \end{array} \right] = \left[ \begin{array}{ccc}
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
* 0 & 0 & 1
* \end{array} \right]. \f]
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
* the z-axis.
* \include MatrixExponential.cpp
* Output: \verbinclude MatrixExponential.out
*
* \note \p M has to be a matrix of \c float, \c double,
* \c complex<float> or \c complex<double> .
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result);
/** \ingroup MatrixFunctions_Module
* \brief Class for computing the matrix exponential.
*/
template <typename MatrixType>
class MatrixExponential {
public:
/** \brief Compute the matrix exponential.
*
* \param M matrix whose exponential is to be computed.
* \param result pointer to the matrix in which to store the result.
*/
MatrixExponential(const MatrixType &M, MatrixType *result);
private:
// Prevent copying
MatrixExponential(const MatrixExponential&);
MatrixExponential& operator=(const MatrixExponential&);
/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
*/
void pade3(const MatrixType &A);
/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
*/
void pade5(const MatrixType &A);
/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
*/
void pade7(const MatrixType &A);
/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
*/
void pade9(const MatrixType &A);
/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
*/
void pade13(const MatrixType &A);
/** \brief Compute Pad&eacute; approximant to the exponential.
*
* Computes \c m_U, \c m_V and \c m_squarings such that
* \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
* \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
* degree of the Pad&eacute; approximant and the value of
* squarings are chosen such that the approximation error is no
* more than the round-off error.
*
* The argument of this function should correspond with the (real
* part of) the entries of \c m_M. It is used to select the
* correct implementation using overloading.
*/
void computeUV(double);
/** \brief Compute Pad&eacute; approximant to the exponential.
*
* \sa computeUV(double);
*/
void computeUV(float);
typedef typename ei_traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
/** \brief Pointer to matrix whose exponential is to be computed. */
const MatrixType* m_M;
/** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_U;
/** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_V;
/** \brief Used for temporary storage. */
MatrixType m_tmp1;
/** \brief Used for temporary storage. */
MatrixType m_tmp2;
/** \brief Identity matrix of the same size as \c m_M. */
MatrixType m_Id;
/** \brief Number of squarings required in the last step. */
int m_squarings;
/** \brief L1 norm of m_M. */
float m_l1norm;
};
template <typename MatrixType>
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) :
m_M(&M),
m_U(M.rows(),M.cols()),
m_V(M.rows(),M.cols()),
m_tmp1(M.rows(),M.cols()),
m_tmp2(M.rows(),M.cols()),
m_Id(MatrixType::Identity(M.rows(), M.cols())),
m_squarings(0),
m_l1norm(static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff()))
{
computeUV(RealScalar());
m_tmp1 = m_U + m_V; // numerator of Pade approximant
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
*result = m_tmp2.partialPivLu().solve(m_tmp1);
for (int i=0; i<m_squarings; i++)
*result *= *result; // undo scaling by repeated squaring
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
{
const Scalar b[] = {120., 60., 12., 1.};
m_tmp1.noalias() = A * A;
m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[2]*m_tmp1 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
{
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
MatrixType A2 = A * A;
m_tmp1.noalias() = A2 * A2;
m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
{
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
m_tmp1.noalias() = A4 * A2;
m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
{
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
MatrixType A6 = A4 * A2;
m_tmp1.noalias() = A6 * A2;
m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
{
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
m_tmp1.noalias() = A4 * A2;
m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
m_tmp2.noalias() = m_tmp1 * m_V;
m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
m_V.noalias() = m_tmp1 * m_tmp2;
m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
if (m_l1norm < 4.258730016922831e-001) {
pade3(*m_M);
} else if (m_l1norm < 1.880152677804762e+000) {
pade5(*m_M);
} else {
const float maxnorm = 3.925724783138660f;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = *m_M / std::pow(Scalar(2), Scalar(m_squarings));
pade7(A);
}
}
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
if (m_l1norm < 1.495585217958292e-002) {
pade3(*m_M);
} else if (m_l1norm < 2.539398330063230e-001) {
pade5(*m_M);
} else if (m_l1norm < 9.504178996162932e-001) {
pade7(*m_M);
} else if (m_l1norm < 2.097847961257068e+000) {
pade9(*m_M);
} else {
const double maxnorm = 5.371920351148152;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = *m_M / std::pow(Scalar(2), Scalar(m_squarings));
pade13(A);
}
}
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result);
}
#endif // EIGEN_MATRIX_EXPONENTIAL