mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00

- Updated unit tests to check above constructor. - In the compute() method of decompositions: Made temporary matrices/vectors class members to avoid heap allocations during compute() (when dynamic matrices are used, of course). These changes can speed up decomposition computation time when a solver instance is used to solve multiple same-sized problems. An added benefit is that the compute() method can now be invoked in contexts were heap allocations are forbidden, such as in real-time control loops. CAVEAT: Not all of the decompositions in the Eigenvalues module have a heap-allocation-free compute() method. A future patch may address this issue, but some required API changes need to be incorporated first.
267 lines
9.8 KiB
C++
267 lines
9.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Claire Maurice
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
|
|
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
* \nonstableyet
|
|
*
|
|
* \class ComplexEigenSolver
|
|
*
|
|
* \brief Computes eigenvalues and eigenvectors of general complex matrices
|
|
*
|
|
* \tparam _MatrixType the type of the matrix of which we are
|
|
* computing the eigendecomposition; this is expected to be an
|
|
* instantiation of the Matrix class template.
|
|
*
|
|
* The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
|
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
|
|
* \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
|
|
* the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
|
|
* its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
|
|
* almost always invertible, in which case we have \f$ A = V D V^{-1}
|
|
* \f$. This is called the eigendecomposition.
|
|
*
|
|
* The main function in this class is compute(), which computes the
|
|
* eigenvalues and eigenvectors of a given function. The
|
|
* documentation for that function contains an example showing the
|
|
* main features of the class.
|
|
*
|
|
* \sa class EigenSolver, class SelfAdjointEigenSolver
|
|
*/
|
|
template<typename _MatrixType> class ComplexEigenSolver
|
|
{
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
/** \brief Complex scalar type for \p _MatrixType.
|
|
*
|
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
|
* complex.
|
|
*/
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
|
*
|
|
* This is a column vector with entries of type #ComplexScalar.
|
|
* The length of the vector is the size of \p _MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
|
|
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
|
*
|
|
* This is a square matrix with entries of type #ComplexScalar.
|
|
* The size is the same as the size of \p _MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
|
|
|
/** \brief Default constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via compute().
|
|
*/
|
|
ComplexEigenSolver()
|
|
: m_eivec(),
|
|
m_eivalues(),
|
|
m_schur(),
|
|
m_isInitialized(false)
|
|
{}
|
|
|
|
/** \brief Default Constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem \a size.
|
|
* \sa ComplexEigenSolver()
|
|
*/
|
|
ComplexEigenSolver(int size)
|
|
: m_eivec(size, size),
|
|
m_eivalues(size),
|
|
m_schur(size),
|
|
m_isInitialized(false)
|
|
{}
|
|
|
|
/** \brief Constructor; computes eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
|
*
|
|
* This constructor calls compute() to compute the eigendecomposition.
|
|
*/
|
|
ComplexEigenSolver(const MatrixType& matrix)
|
|
: m_eivec(matrix.rows(),matrix.cols()),
|
|
m_eivalues(matrix.cols()),
|
|
m_schur(matrix.rows()),
|
|
m_isInitialized(false)
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
/** \brief Returns the eigenvectors of given matrix.
|
|
*
|
|
* It is assumed that either the constructor
|
|
* ComplexEigenSolver(const MatrixType& matrix) or the member
|
|
* function compute(const MatrixType& matrix) has been called
|
|
* before to compute the eigendecomposition of a matrix. This
|
|
* function returns a matrix whose columns are the
|
|
* eigenvectors. Column \f$ k \f$ is an eigenvector
|
|
* corresponding to eigenvalue number \f$ k \f$ as returned by
|
|
* eigenvalues(). The eigenvectors are normalized to have
|
|
* (Euclidean) norm equal to one. The matrix returned by this
|
|
* function is the matrix \f$ V \f$ in the eigendecomposition \f$
|
|
* A = V D V^{-1} \f$, if it exists.
|
|
*
|
|
* Example: \include ComplexEigenSolver_eigenvectors.cpp
|
|
* Output: \verbinclude ComplexEigenSolver_eigenvectors.out
|
|
*/
|
|
EigenvectorType eigenvectors() const
|
|
{
|
|
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
|
return m_eivec;
|
|
}
|
|
|
|
/** \brief Returns the eigenvalues of given matrix.
|
|
*
|
|
* It is assumed that either the constructor
|
|
* ComplexEigenSolver(const MatrixType& matrix) or the member
|
|
* function compute(const MatrixType& matrix) has been called
|
|
* before to compute the eigendecomposition of a matrix. This
|
|
* function returns a column vector containing the
|
|
* eigenvalues. Eigenvalues are repeated according to their
|
|
* algebraic multiplicity, so there are as many eigenvalues as
|
|
* rows in the matrix.
|
|
*
|
|
* Example: \include ComplexEigenSolver_eigenvalues.cpp
|
|
* Output: \verbinclude ComplexEigenSolver_eigenvalues.out
|
|
*/
|
|
EigenvalueType eigenvalues() const
|
|
{
|
|
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
|
return m_eivalues;
|
|
}
|
|
|
|
/** \brief Computes eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
|
*
|
|
* This function computes the eigenvalues and eigenvectors of \p
|
|
* matrix. The eigenvalues() and eigenvectors() functions can be
|
|
* used to retrieve the computed eigendecomposition.
|
|
*
|
|
* The matrix is first reduced to Schur form using the
|
|
* ComplexSchur class. The Schur decomposition is then used to
|
|
* compute the eigenvalues and eigenvectors.
|
|
*
|
|
* The cost of the computation is dominated by the cost of the
|
|
* Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
|
|
* is the size of the matrix.
|
|
*
|
|
* Example: \include ComplexEigenSolver_compute.cpp
|
|
* Output: \verbinclude ComplexEigenSolver_compute.out
|
|
*/
|
|
void compute(const MatrixType& matrix);
|
|
|
|
protected:
|
|
EigenvectorType m_eivec;
|
|
EigenvalueType m_eivalues;
|
|
ComplexSchur<MatrixType> m_schur;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
|
|
template<typename MatrixType>
|
|
void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
|
{
|
|
// this code is inspired from Jampack
|
|
assert(matrix.cols() == matrix.rows());
|
|
const int n = matrix.cols();
|
|
const RealScalar matrixnorm = matrix.norm();
|
|
|
|
// Step 1: Do a complex Schur decomposition, A = U T U^*
|
|
// The eigenvalues are on the diagonal of T.
|
|
m_schur.compute(matrix);
|
|
m_eivalues = m_schur.matrixT().diagonal();
|
|
|
|
// Step 2: Compute X such that T = X D X^(-1), where D is the diagonal of T.
|
|
// The matrix X is unit triangular.
|
|
EigenvectorType X = EigenvectorType::Zero(n, n);
|
|
for(int k=n-1 ; k>=0 ; k--)
|
|
{
|
|
X.coeffRef(k,k) = ComplexScalar(1.0,0.0);
|
|
// Compute X(i,k) using the (i,k) entry of the equation X T = D X
|
|
for(int i=k-1 ; i>=0 ; i--)
|
|
{
|
|
X.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
|
|
if(k-i-1>0)
|
|
X.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * X.col(k).segment(i+1,k-i-1)).value();
|
|
ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
|
|
if(z==ComplexScalar(0))
|
|
{
|
|
// If the i-th and k-th eigenvalue are equal, then z equals 0.
|
|
// Use a small value instead, to prevent division by zero.
|
|
ei_real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
|
|
}
|
|
X.coeffRef(i,k) = X.coeff(i,k) / z;
|
|
}
|
|
}
|
|
|
|
// Step 3: Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
|
|
m_eivec = m_schur.matrixU() * X;
|
|
// .. and normalize the eigenvectors
|
|
for(int k=0 ; k<n ; k++)
|
|
{
|
|
m_eivec.col(k).normalize();
|
|
}
|
|
m_isInitialized = true;
|
|
|
|
// Step 4: Sort the eigenvalues
|
|
for (int i=0; i<n; i++)
|
|
{
|
|
int k;
|
|
m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
|
|
if (k != 0)
|
|
{
|
|
k += i;
|
|
std::swap(m_eivalues[k],m_eivalues[i]);
|
|
m_eivec.col(i).swap(m_eivec.col(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
|