mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 01:59:38 +08:00
355 lines
13 KiB
C++
355 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MATHFUNCTIONS_H
|
|
#define EIGEN_MATHFUNCTIONS_H
|
|
|
|
template<typename T> inline T ei_random(T a, T b);
|
|
template<typename T> inline T ei_random();
|
|
template<typename T> inline T ei_random_amplitude()
|
|
{
|
|
if(NumTraits<T>::HasFloatingPoint) return static_cast<T>(1);
|
|
else return static_cast<T>(10);
|
|
}
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real ei_hypot(T x, T y)
|
|
{
|
|
typedef typename NumTraits<T>::Real RealScalar;
|
|
RealScalar _x = ei_abs(x);
|
|
RealScalar _y = ei_abs(y);
|
|
T p = std::max(_x, _y);
|
|
T q = std::min(_x, _y);
|
|
T qp = q/p;
|
|
return p * ei_sqrt(T(1) + qp*qp);
|
|
}
|
|
|
|
// the point of wrapping these casts in this helper template struct is to allow users to specialize it to custom types
|
|
// that may not have the needed conversion operators (especially as c++98 doesn't have explicit conversion operators).
|
|
|
|
template<typename OldType, typename NewType> struct ei_cast_impl
|
|
{
|
|
static inline NewType run(const OldType& x)
|
|
{
|
|
return static_cast<NewType>(x);
|
|
}
|
|
};
|
|
|
|
template<typename OldType, typename NewType> inline NewType ei_cast(const OldType& x)
|
|
{
|
|
return ei_cast_impl<OldType, NewType>::run(x);
|
|
}
|
|
|
|
|
|
/**************
|
|
*** int ***
|
|
**************/
|
|
|
|
inline int ei_real(int x) { return x; }
|
|
inline int& ei_real_ref(int& x) { return x; }
|
|
inline int ei_imag(int) { return 0; }
|
|
inline int ei_conj(int x) { return x; }
|
|
inline int ei_abs(int x) { return std::abs(x); }
|
|
inline int ei_abs2(int x) { return x*x; }
|
|
inline int ei_sqrt(int) { ei_assert(false); return 0; }
|
|
inline int ei_exp(int) { ei_assert(false); return 0; }
|
|
inline int ei_log(int) { ei_assert(false); return 0; }
|
|
inline int ei_sin(int) { ei_assert(false); return 0; }
|
|
inline int ei_cos(int) { ei_assert(false); return 0; }
|
|
inline int ei_atan2(int, int) { ei_assert(false); return 0; }
|
|
inline int ei_pow(int x, int y)
|
|
{
|
|
int res = 1;
|
|
if(y < 0) return 0;
|
|
if(y & 1) res *= x;
|
|
y >>= 1;
|
|
while(y)
|
|
{
|
|
x *= x;
|
|
if(y&1) res *= x;
|
|
y >>= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<> inline int ei_random(int a, int b)
|
|
{
|
|
// We can't just do rand()%n as only the high-order bits are really random
|
|
return a + static_cast<int>((b-a+1) * (std::rand() / (RAND_MAX + 1.0)));
|
|
}
|
|
template<> inline int ei_random()
|
|
{
|
|
return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(int a, int, int = NumTraits<int>::dummy_precision())
|
|
{
|
|
return a == 0;
|
|
}
|
|
inline bool ei_isApprox(int a, int b, int = NumTraits<int>::dummy_precision())
|
|
{
|
|
return a == b;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(int a, int b, int = NumTraits<int>::dummy_precision())
|
|
{
|
|
return a <= b;
|
|
}
|
|
|
|
/**************
|
|
*** float ***
|
|
**************/
|
|
|
|
inline float ei_real(float x) { return x; }
|
|
inline float& ei_real_ref(float& x) { return x; }
|
|
inline float ei_imag(float) { return 0.f; }
|
|
inline float ei_conj(float x) { return x; }
|
|
inline float ei_abs(float x) { return std::abs(x); }
|
|
inline float ei_abs2(float x) { return x*x; }
|
|
inline float ei_norm1(float x) { return ei_abs(x); }
|
|
inline float ei_sqrt(float x) { return std::sqrt(x); }
|
|
inline float ei_exp(float x) { return std::exp(x); }
|
|
inline float ei_log(float x) { return std::log(x); }
|
|
inline float ei_sin(float x) { return std::sin(x); }
|
|
inline float ei_cos(float x) { return std::cos(x); }
|
|
inline float ei_atan2(float y, float x) { return std::atan2(y,x); }
|
|
inline float ei_pow(float x, float y) { return std::pow(x, y); }
|
|
|
|
template<> inline float ei_random(float a, float b)
|
|
{
|
|
#ifdef EIGEN_NICE_RANDOM
|
|
int i;
|
|
do { i = ei_random<int>(256*int(a),256*int(b));
|
|
} while(i==0);
|
|
return float(i)/256.f;
|
|
#else
|
|
return a + (b-a) * float(std::rand()) / float(RAND_MAX);
|
|
#endif
|
|
}
|
|
template<> inline float ei_random()
|
|
{
|
|
return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(float a, float b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return ei_abs(a) <= ei_abs(b) * prec;
|
|
}
|
|
inline bool ei_isApprox(float a, float b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(float a, float b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return a <= b || ei_isApprox(a, b, prec);
|
|
}
|
|
|
|
/**************
|
|
*** double ***
|
|
**************/
|
|
|
|
inline double ei_real(double x) { return x; }
|
|
inline double& ei_real_ref(double& x) { return x; }
|
|
inline double ei_imag(double) { return 0.; }
|
|
inline double ei_conj(double x) { return x; }
|
|
inline double ei_abs(double x) { return std::abs(x); }
|
|
inline double ei_abs2(double x) { return x*x; }
|
|
inline double ei_norm1(double x) { return ei_abs(x); }
|
|
inline double ei_sqrt(double x) { return std::sqrt(x); }
|
|
inline double ei_exp(double x) { return std::exp(x); }
|
|
inline double ei_log(double x) { return std::log(x); }
|
|
inline double ei_sin(double x) { return std::sin(x); }
|
|
inline double ei_cos(double x) { return std::cos(x); }
|
|
inline double ei_atan2(double y, double x) { return std::atan2(y,x); }
|
|
inline double ei_pow(double x, double y) { return std::pow(x, y); }
|
|
|
|
template<> inline double ei_random(double a, double b)
|
|
{
|
|
#ifdef EIGEN_NICE_RANDOM
|
|
int i;
|
|
do { i= ei_random<int>(256*int(a),256*int(b));
|
|
} while(i==0);
|
|
return i/256.;
|
|
#else
|
|
return a + (b-a) * std::rand() / RAND_MAX;
|
|
#endif
|
|
}
|
|
template<> inline double ei_random()
|
|
{
|
|
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(double a, double b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return ei_abs(a) <= ei_abs(b) * prec;
|
|
}
|
|
inline bool ei_isApprox(double a, double b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(double a, double b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return a <= b || ei_isApprox(a, b, prec);
|
|
}
|
|
|
|
/*********************
|
|
*** complex<float> ***
|
|
*********************/
|
|
|
|
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
|
|
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
|
|
inline float& ei_real_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[0]; }
|
|
inline float& ei_imag_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[1]; }
|
|
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
|
|
inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
|
|
inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
|
|
inline float ei_norm1(const std::complex<float> &x) { return(ei_abs(x.real()) + ei_abs(x.imag())); }
|
|
inline std::complex<float> ei_sqrt(std::complex<float>x) { return std::sqrt(x); }
|
|
inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); }
|
|
inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); }
|
|
inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); }
|
|
inline std::complex<float> ei_atan2(std::complex<float>, std::complex<float> ) { ei_assert(false); return 0.f; }
|
|
|
|
template<> inline std::complex<float> ei_random()
|
|
{
|
|
return std::complex<float>(ei_random<float>(), ei_random<float>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision())
|
|
{
|
|
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
|
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
|
}
|
|
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
/**********************
|
|
*** complex<double> ***
|
|
**********************/
|
|
|
|
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
|
|
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
|
|
inline double& ei_real_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[0]; }
|
|
inline double& ei_imag_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[1]; }
|
|
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
|
|
inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
|
|
inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
|
|
inline double ei_norm1(const std::complex<double> &x) { return(ei_abs(x.real()) + ei_abs(x.imag())); }
|
|
inline std::complex<double> ei_sqrt(std::complex<double>x) { return std::sqrt(x); }
|
|
inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); }
|
|
inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); }
|
|
inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); }
|
|
inline std::complex<double> ei_atan2(std::complex<double>, std::complex<double>) { ei_assert(false); return 0.; }
|
|
|
|
template<> inline std::complex<double> ei_random()
|
|
{
|
|
return std::complex<double>(ei_random<double>(), ei_random<double>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision())
|
|
{
|
|
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
|
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
|
}
|
|
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
|
|
/******************
|
|
*** long double ***
|
|
******************/
|
|
|
|
inline long double ei_real(long double x) { return x; }
|
|
inline long double& ei_real_ref(long double& x) { return x; }
|
|
inline long double ei_imag(long double) { return 0.; }
|
|
inline long double ei_conj(long double x) { return x; }
|
|
inline long double ei_abs(long double x) { return std::abs(x); }
|
|
inline long double ei_abs2(long double x) { return x*x; }
|
|
inline long double ei_sqrt(long double x) { return std::sqrt(x); }
|
|
inline long double ei_exp(long double x) { return std::exp(x); }
|
|
inline long double ei_log(long double x) { return std::log(x); }
|
|
inline long double ei_sin(long double x) { return std::sin(x); }
|
|
inline long double ei_cos(long double x) { return std::cos(x); }
|
|
inline long double ei_atan2(long double y, long double x) { return std::atan2(y,x); }
|
|
inline long double ei_pow(long double x, long double y) { return std::pow(x, y); }
|
|
|
|
template<> inline long double ei_random(long double a, long double b)
|
|
{
|
|
return ei_random<double>(static_cast<double>(a),static_cast<double>(b));
|
|
}
|
|
template<> inline long double ei_random()
|
|
{
|
|
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
|
|
{
|
|
return ei_abs(a) <= ei_abs(b) * prec;
|
|
}
|
|
inline bool ei_isApprox(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
|
|
{
|
|
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
|
|
{
|
|
return a <= b || ei_isApprox(a, b, prec);
|
|
}
|
|
|
|
/**************
|
|
*** bool ***
|
|
**************/
|
|
|
|
inline bool ei_real(bool x) { return x; }
|
|
inline bool& ei_real_ref(bool& x) { return x; }
|
|
inline bool ei_imag(bool) { return 0; }
|
|
inline bool ei_conj(bool x) { return x; }
|
|
inline bool ei_abs(bool x) { return x; }
|
|
inline bool ei_abs2(bool x) { return x; }
|
|
inline bool ei_sqrt(bool x) { return x; }
|
|
|
|
template<> inline bool ei_random()
|
|
{
|
|
return (ei_random<int>(0,1) == 1);
|
|
}
|
|
inline bool ei_isMuchSmallerThan(bool a, bool, bool = NumTraits<bool>::dummy_precision())
|
|
{
|
|
return !a;
|
|
}
|
|
inline bool ei_isApprox(bool a, bool b, bool = NumTraits<bool>::dummy_precision())
|
|
{
|
|
return a == b;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(bool a, bool b, bool = NumTraits<bool>::dummy_precision())
|
|
{
|
|
return int(a) <= int(b);
|
|
}
|
|
|
|
#endif // EIGEN_MATHFUNCTIONS_H
|