eigen/doc/examples/matrixfree_cg.cpp
2015-12-02 17:36:17 +01:00

181 lines
5.4 KiB
C++

#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/IterativeLinearSolvers>
class MatrixReplacement;
template<typename Rhs> class MatrixReplacement_ProductReturnType;
namespace Eigen {
namespace internal {
template<>
struct traits<MatrixReplacement> : Eigen::internal::traits<Eigen::SparseMatrix<double> >
{};
template <typename Rhs>
struct traits<MatrixReplacement_ProductReturnType<Rhs> > {
// The equivalent plain objet type of the product. This type is used if the product needs to be evaluated into a temporary.
typedef Eigen::Matrix<typename Rhs::Scalar, Eigen::Dynamic, Rhs::ColsAtCompileTime> ReturnType;
};
}
}
// Inheriting EigenBase should not be needed in the future.
class MatrixReplacement : public Eigen::EigenBase<MatrixReplacement> {
public:
// Expose some compile-time information to Eigen:
typedef double Scalar;
typedef double RealScalar;
enum {
ColsAtCompileTime = Eigen::Dynamic,
RowsAtCompileTime = Eigen::Dynamic,
MaxColsAtCompileTime = Eigen::Dynamic,
MaxRowsAtCompileTime = Eigen::Dynamic
};
Index rows() const { return 4; }
Index cols() const { return 4; }
void resize(Index a_rows, Index a_cols)
{
// This method should not be needed in the future.
assert(a_rows==0 && a_cols==0 || a_rows==rows() && a_cols==cols());
}
// In the future, the return type should be Eigen::Product<MatrixReplacement,Rhs>
template<typename Rhs>
MatrixReplacement_ProductReturnType<Rhs> operator*(const Eigen::MatrixBase<Rhs>& x) const {
return MatrixReplacement_ProductReturnType<Rhs>(*this, x.derived());
}
};
// The proxy class representing the product of a MatrixReplacement with a MatrixBase<>
template<typename Rhs>
class MatrixReplacement_ProductReturnType : public Eigen::ReturnByValue<MatrixReplacement_ProductReturnType<Rhs> > {
public:
typedef MatrixReplacement::Index Index;
// The ctor store references to the matrix and right-hand-side object (usually a vector).
MatrixReplacement_ProductReturnType(const MatrixReplacement& matrix, const Rhs& rhs)
: m_matrix(matrix), m_rhs(rhs)
{}
Index rows() const { return m_matrix.rows(); }
Index cols() const { return m_rhs.cols(); }
// This function is automatically called by Eigen. It must evaluate the product of matrix * rhs into y.
template<typename Dest>
void evalTo(Dest& y) const
{
y.setZero(4);
y(0) += 2 * m_rhs(0); y(1) += 1 * m_rhs(0);
y(0) += 1 * m_rhs(1); y(1) += 2 * m_rhs(1); y(2) += 1 * m_rhs(1);
y(1) += 1 * m_rhs(2); y(2) += 2 * m_rhs(2); y(3) += 1 * m_rhs(2);
y(2) += 1 * m_rhs(3); y(3) += 2 * m_rhs(3);
}
protected:
const MatrixReplacement& m_matrix;
typename Rhs::Nested m_rhs;
};
/*****/
// This class simply warp a diagonal matrix as a Jacobi preconditioner.
// In the future such simple and generic wrapper should be shipped within Eigen itsel.
template <typename _Scalar>
class MyJacobiPreconditioner
{
typedef _Scalar Scalar;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> Vector;
typedef typename Vector::Index Index;
public:
// this typedef is only to export the scalar type and compile-time dimensions to solve_retval
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> MatrixType;
MyJacobiPreconditioner() : m_isInitialized(false) {}
void setInvDiag(const Eigen::VectorXd &invdiag) {
m_invdiag=invdiag;
m_isInitialized=true;
}
Index rows() const { return m_invdiag.size(); }
Index cols() const { return m_invdiag.size(); }
template<typename MatType>
MyJacobiPreconditioner& analyzePattern(const MatType& ) { return *this; }
template<typename MatType>
MyJacobiPreconditioner& factorize(const MatType& mat) { return *this; }
template<typename MatType>
MyJacobiPreconditioner& compute(const MatType& mat) { return *this; }
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_invdiag.array() * b.array() ;
}
template<typename Rhs> inline const Eigen::internal::solve_retval<MyJacobiPreconditioner, Rhs>
solve(const Eigen::MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "MyJacobiPreconditioner is not initialized.");
eigen_assert(m_invdiag.size()==b.rows()
&& "MyJacobiPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
return Eigen::internal::solve_retval<MyJacobiPreconditioner, Rhs>(*this, b.derived());
}
protected:
Vector m_invdiag;
bool m_isInitialized;
};
namespace Eigen {
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<MyJacobiPreconditioner<_MatrixType>, Rhs>
: solve_retval_base<MyJacobiPreconditioner<_MatrixType>, Rhs>
{
typedef MyJacobiPreconditioner<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
}
}
/*****/
int main()
{
MatrixReplacement A;
Eigen::VectorXd b(4), x;
b << 1, 1, 1, 1;
// solve Ax = b using CG with matrix-free version:
Eigen::ConjugateGradient < MatrixReplacement, Eigen::Lower|Eigen::Upper, MyJacobiPreconditioner<double> > cg;
Eigen::VectorXd invdiag(4);
invdiag << 1./3., 1./4., 1./4., 1./3.;
cg.preconditioner().setInvDiag(invdiag);
cg.compute(A);
x = cg.solve(b);
std::cout << "#iterations: " << cg.iterations() << std::endl;
std::cout << "estimated error: " << cg.error() << std::endl;
}