eigen/Eigen/src/Core/arch/SSE/PacketMath.h
Rasmus Munk Larsen 2f6ddaa25c Add partial vectorization for matrices and tensors of bool. This speeds up boolean operations on Tensors by up to 25x.
Benchmark numbers for the logical and of two NxN tensors:

name                                               old time/op             new time/op             delta
BM_booleanAnd_1T/3   [using 1 threads]             14.6ns ± 0%             14.4ns ± 0%   -0.96%
BM_booleanAnd_1T/4   [using 1 threads]             20.5ns ±12%              9.0ns ± 0%  -56.07%
BM_booleanAnd_1T/7   [using 1 threads]             41.7ns ± 0%             10.5ns ± 0%  -74.87%
BM_booleanAnd_1T/8   [using 1 threads]             52.1ns ± 0%             10.1ns ± 0%  -80.59%
BM_booleanAnd_1T/10  [using 1 threads]             76.3ns ± 0%             13.8ns ± 0%  -81.87%
BM_booleanAnd_1T/15  [using 1 threads]              167ns ± 0%               16ns ± 0%  -90.45%
BM_booleanAnd_1T/16  [using 1 threads]              188ns ± 0%               16ns ± 0%  -91.57%
BM_booleanAnd_1T/31  [using 1 threads]              667ns ± 0%               34ns ± 0%  -94.83%
BM_booleanAnd_1T/32  [using 1 threads]              710ns ± 0%               35ns ± 0%  -95.01%
BM_booleanAnd_1T/64  [using 1 threads]             2.80µs ± 0%             0.11µs ± 0%  -95.93%
BM_booleanAnd_1T/128 [using 1 threads]             11.2µs ± 0%              0.4µs ± 0%  -96.11%
BM_booleanAnd_1T/256 [using 1 threads]             44.6µs ± 0%              2.5µs ± 0%  -94.31%
BM_booleanAnd_1T/512 [using 1 threads]              178µs ± 0%               10µs ± 0%  -94.35%
BM_booleanAnd_1T/1k  [using 1 threads]              717µs ± 0%               78µs ± 1%  -89.07%
BM_booleanAnd_1T/2k  [using 1 threads]             2.87ms ± 0%             0.31ms ± 1%  -89.08%
BM_booleanAnd_1T/4k  [using 1 threads]             11.7ms ± 0%              1.9ms ± 4%  -83.55%
BM_booleanAnd_1T/10k [using 1 threads]             70.3ms ± 0%             17.2ms ± 4%  -75.48%
2020-04-20 20:16:28 +00:00

1343 lines
53 KiB
C++
Executable File

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_SSE_H
#define EIGEN_PACKET_MATH_SSE_H
namespace Eigen {
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
#if !defined(EIGEN_VECTORIZE_AVX) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS)
// 32 bits => 8 registers
// 64 bits => 16 registers
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif
#ifdef EIGEN_VECTORIZE_FMA
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD 1
#endif
#endif
#if ((defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW) && (__GXX_ABI_VERSION < 1004)) || EIGEN_OS_QNX
// With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot
// have overloads for both types without linking error.
// One solution is to increase ABI version using -fabi-version=4 (or greater).
// Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper
// structure:
typedef eigen_packet_wrapper<__m128> Packet4f;
typedef eigen_packet_wrapper<__m128d> Packet2d;
#else
typedef __m128 Packet4f;
typedef __m128d Packet2d;
#endif
typedef eigen_packet_wrapper<__m128i, 0> Packet4i;
typedef eigen_packet_wrapper<__m128i, 1> Packet16b;
template<> struct is_arithmetic<__m128> { enum { value = true }; };
template<> struct is_arithmetic<__m128i> { enum { value = true }; };
template<> struct is_arithmetic<__m128d> { enum { value = true }; };
template<> struct is_arithmetic<Packet16b> { enum { value = true }; };
#define EIGEN_SSE_SHUFFLE_MASK(p,q,r,s) ((s)<<6|(r)<<4|(q)<<2|(p))
#define vec4f_swizzle1(v,p,q,r,s) \
(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s))))
#define vec4i_swizzle1(v,p,q,r,s) \
(_mm_shuffle_epi32( v, EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))
#define vec2d_swizzle1(v,p,q) \
(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), EIGEN_SSE_SHUFFLE_MASK(2*p,2*p+1,2*q,2*q+1))))
#define vec4f_swizzle2(a,b,p,q,r,s) \
(_mm_shuffle_ps( (a), (b), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))
#define vec4i_swizzle2(a,b,p,q,r,s) \
(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))))
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
const Packet2d p2d_##NAME = pset1<Packet2d>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = pset1frombits<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
// Use the packet_traits defined in AVX/PacketMath.h instead if we're going
// to leverage AVX instructions.
#ifndef EIGEN_VECTORIZE_AVX
template <>
struct packet_traits<float> : default_packet_traits {
typedef Packet4f type;
typedef Packet4f half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
HasDiv = 1,
HasSin = EIGEN_FAST_MATH,
HasCos = EIGEN_FAST_MATH,
HasLog = 1,
HasLog1p = 1,
HasExpm1 = 1,
HasNdtri = 1,
HasExp = 1,
HasBessel = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasTanh = EIGEN_FAST_MATH,
HasErf = EIGEN_FAST_MATH,
HasBlend = 1,
HasInsert = 1,
HasFloor = 1
#ifdef EIGEN_VECTORIZE_SSE4_1
,
HasRint = 1,
HasRound = 1,
HasCeil = 1
#endif
};
};
template <>
struct packet_traits<double> : default_packet_traits {
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasDiv = 1,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasBlend = 1,
HasInsert = 1
#ifdef EIGEN_VECTORIZE_SSE4_1
,
HasRound = 1,
HasRint = 1,
HasFloor = 1,
HasCeil = 1
#endif
};
};
#endif
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasShift = 1,
HasBlend = 1
};
};
template<> struct packet_traits<bool> : default_packet_traits
{
typedef Packet16b type;
typedef Packet16b half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
HasHalfPacket = 0,
size=16,
HasAdd = 0,
HasSub = 0,
HasShift = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasReduxp = 0
};
};
template<> struct unpacket_traits<Packet4f> {
typedef float type;
typedef Packet4f half;
typedef Packet4i integer_packet;
enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
};
template<> struct unpacket_traits<Packet2d> {
typedef double type;
typedef Packet2d half;
enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
};
template<> struct unpacket_traits<Packet4i> {
typedef int type;
typedef Packet4i half;
enum {size=4, alignment=Aligned16, vectorizable=false, masked_load_available=false, masked_store_available=false};
};
template<> struct unpacket_traits<Packet16b> {
typedef bool type;
typedef Packet16b half;
enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
};
#ifndef EIGEN_VECTORIZE_AVX
template<> struct scalar_div_cost<float,true> { enum { value = 7 }; };
template<> struct scalar_div_cost<double,true> { enum { value = 8 }; };
#endif
#if EIGEN_COMP_MSVC==1500
// Workaround MSVC 9 internal compiler error.
// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps(from,from,from,from); }
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps1(from); }
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
#endif
template<> EIGEN_STRONG_INLINE Packet16b pset1<Packet16b>(const bool& from) { return _mm_set1_epi8(static_cast<char>(from)); }
template<> EIGEN_STRONG_INLINE Packet4f pset1frombits<Packet4f>(unsigned int from) { return _mm_castsi128_ps(pset1<Packet4i>(from)); }
template<> EIGEN_STRONG_INLINE Packet4f pzero(const Packet4f& /*a*/) { return _mm_setzero_ps(); }
template<> EIGEN_STRONG_INLINE Packet2d pzero(const Packet2d& /*a*/) { return _mm_setzero_pd(); }
template<> EIGEN_STRONG_INLINE Packet4i pzero(const Packet4i& /*a*/) { return _mm_setzero_si128(); }
// GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction.
// However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203)
// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions.
// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply.
// Also note that with AVX, we want it to generate a vbroadcastss.
#if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__)
template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) {
return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0);
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
{
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
return _mm_xor_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
{
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
return _mm_xor_pd(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
{
return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a);
}
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_mullo_epi32(a,b);
#else
// this version is slightly faster than 4 scalar products
return vec4i_swizzle1(
vec4i_swizzle2(
_mm_mul_epu32(a,b),
_mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
vec4i_swizzle1(b,1,0,3,2)),
0,2,0,2),
0,2,1,3);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
#ifdef EIGEN_VECTORIZE_FMA
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); }
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); }
#endif
#ifdef EIGEN_VECTORIZE_SSE4_1
template<> EIGEN_DEVICE_FUNC inline Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) { return _mm_blendv_ps(b,a,mask); }
template<> EIGEN_DEVICE_FUNC inline Packet2d pselect(const Packet2d& mask, const Packet2d& a, const Packet2d& b) { return _mm_blendv_pd(b,a,mask); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
// There appears to be a bug in GCC, by which the optimizer may
// flip the argument order in calls to _mm_min_ps, so we have to
// resort to inline ASM here. This is supposed to be fixed in gcc6.3,
// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
#ifdef EIGEN_VECTORIZE_AVX
Packet4f res;
asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
#else
Packet4f res = b;
asm("minps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
#endif
return res;
#else
// Arguments are reversed to match NaN propagation behavior of std::min.
return _mm_min_ps(b, a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
// There appears to be a bug in GCC, by which the optimizer may
// flip the argument order in calls to _mm_min_pd, so we have to
// resort to inline ASM here. This is supposed to be fixed in gcc6.3,
// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
#ifdef EIGEN_VECTORIZE_AVX
Packet2d res;
asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
#else
Packet2d res = b;
asm("minpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
#endif
return res;
#else
// Arguments are reversed to match NaN propagation behavior of std::min.
return _mm_min_pd(b, a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_min_epi32(a,b);
#else
// after some bench, this version *is* faster than a scalar implementation
Packet4i mask = _mm_cmplt_epi32(a,b);
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
// There appears to be a bug in GCC, by which the optimizer may
// flip the argument order in calls to _mm_max_ps, so we have to
// resort to inline ASM here. This is supposed to be fixed in gcc6.3,
// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
#ifdef EIGEN_VECTORIZE_AVX
Packet4f res;
asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
#else
Packet4f res = b;
asm("maxps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
#endif
return res;
#else
// Arguments are reversed to match NaN propagation behavior of std::max.
return _mm_max_ps(b, a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) {
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
// There appears to be a bug in GCC, by which the optimizer may
// flip the argument order in calls to _mm_max_pd, so we have to
// resort to inline ASM here. This is supposed to be fixed in gcc6.3,
// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
#ifdef EIGEN_VECTORIZE_AVX
Packet2d res;
asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
#else
Packet2d res = b;
asm("maxpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
#endif
return res;
#else
// Arguments are reversed to match NaN propagation behavior of std::max.
return _mm_max_pd(b, a);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_max_epi32(a,b);
#else
// after some bench, this version *is* faster than a scalar implementation
Packet4i mask = _mm_cmpgt_epi32(a,b);
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) { return _mm_cmple_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) { return _mm_cmplt_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) { return _mm_cmpnge_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) { return _mm_cmpeq_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) { return _mm_cmple_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) { return _mm_cmplt_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) { return _mm_cmpnge_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) { return _mm_cmpeq_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) { return _mm_cmplt_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) { return _mm_cmpeq_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet16b pcmp_eq(const Packet16b& a, const Packet16b& b) { return _mm_cmpeq_epi8(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i ptrue<Packet4i>(const Packet4i& a) { return _mm_cmpeq_epi32(a, a); }
template<> EIGEN_STRONG_INLINE Packet16b ptrue<Packet16b>(const Packet16b& a) { return _mm_cmpeq_epi32(a, a); }
template<> EIGEN_STRONG_INLINE Packet4f
ptrue<Packet4f>(const Packet4f& a) {
Packet4i b = _mm_castps_si128(a);
return _mm_castsi128_ps(_mm_cmpeq_epi32(b, b));
}
template<> EIGEN_STRONG_INLINE Packet2d
ptrue<Packet2d>(const Packet2d& a) {
Packet4i b = _mm_castpd_si128(a);
return _mm_castsi128_pd(_mm_cmpeq_epi32(b, b));
}
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet16b pand<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet16b por<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet16b pxor<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(b,a); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(b,a); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(b,a); }
template<int N> EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(Packet4i a) { return _mm_srai_epi32(a,N); }
template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_right(Packet4i a) { return _mm_srli_epi32(a,N); }
template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_left(Packet4i a) { return _mm_slli_epi32(a,N); }
#ifdef EIGEN_VECTORIZE_SSE4_1
template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a)
{
// Unfortunatly _mm_round_ps doesn't have a rounding mode to implement numext::round.
const Packet4f mask = pset1frombits<Packet4f>(0x80000000u);
const Packet4f prev0dot5 = pset1frombits<Packet4f>(0x3EFFFFFFu);
return _mm_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a)
{
const Packet2d mask = _mm_castsi128_pd(_mm_set_epi64x(0x8000000000000000ull, 0x8000000000000000ull));
const Packet2d prev0dot5 = _mm_castsi128_pd(_mm_set_epi64x(0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull));
return _mm_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
}
template<> EIGEN_STRONG_INLINE Packet4f print<Packet4f>(const Packet4f& a) { return _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
template<> EIGEN_STRONG_INLINE Packet2d print<Packet2d>(const Packet2d& a) { return _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); }
template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) { return _mm_ceil_ps(a); }
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return _mm_ceil_pd(a); }
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) { return _mm_floor_ps(a); }
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return _mm_floor_pd(a); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a)
{
const Packet4f cst_1 = pset1<Packet4f>(1.0f);
Packet4i emm0 = _mm_cvttps_epi32(a);
Packet4f tmp = _mm_cvtepi32_ps(emm0);
/* if greater, substract 1 */
Packet4f mask = _mm_cmpgt_ps(tmp, a);
mask = pand(mask, cst_1);
return psub(tmp, mask);
}
// WARNING: this pfloor implementation makes sense for small inputs only,
// It is currently only used by pexp and not exposed through HasFloor.
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a)
{
const Packet2d cst_1 = pset1<Packet2d>(1.0);
Packet4i emm0 = _mm_cvttpd_epi32(a);
Packet2d tmp = _mm_cvtepi32_pd(emm0);
/* if greater, substract 1 */
Packet2d mask = _mm_cmpgt_pd(tmp, a);
mask = pand(mask, cst_1);
return psub(tmp, mask);
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
template<> EIGEN_STRONG_INLINE Packet16b pload<Packet16b>(const bool* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
#if EIGEN_COMP_MSVC
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
EIGEN_DEBUG_UNALIGNED_LOAD
#if (EIGEN_COMP_MSVC==1600)
// NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
// (i.e., it does not generate an unaligned load!!
__m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
res = _mm_loadh_pi(res, (const __m64*)(from+2));
return res;
#else
return _mm_loadu_ps(from);
#endif
}
#else
// NOTE: with the code below, MSVC's compiler crashes!
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
return _mm_loadu_ps(from);
}
#endif
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
return _mm_loadu_pd(from);
}
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}
template<> EIGEN_STRONG_INLINE Packet16b ploadu<Packet16b>(const bool* from) {
EIGEN_DEBUG_UNALIGNED_LOAD
return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1);
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{ return pset1<Packet2d>(from[0]); }
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i tmp;
tmp = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(from));
return vec4i_swizzle1(tmp, 0, 0, 1, 1);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstore<bool>(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstoreu<bool>(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
return _mm_set_pd(from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
to[stride*0] = _mm_cvtss_f32(from);
to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1));
to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2));
to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
to[stride*0] = _mm_cvtsd_f64(from);
to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
to[stride*0] = _mm_cvtsi128_si32(from);
to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));
to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2));
to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3));
}
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
{
Packet4f pa = _mm_set_ss(a);
pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0)));
}
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
{
Packet2d pa = _mm_set_sd(a);
pstore(to, Packet2d(vec2d_swizzle1(pa,0,0)));
}
#if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900
typedef const void * SsePrefetchPtrType;
#else
typedef const char * SsePrefetchPtrType;
#endif
#ifndef EIGEN_VECTORIZE_AVX
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
#endif
#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
// Direct of the struct members fixed bug #62.
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#elif EIGEN_COMP_MSVC_STRICT
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#else
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
{ return _mm_shuffle_ps(a,a,0x1B); }
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{ return _mm_shuffle_pd(a,a,0x1); }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{ return _mm_shuffle_epi32(a,0x1B); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
{
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
return _mm_and_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
{
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
return _mm_and_pd(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSSE3
return _mm_abs_epi32(a);
#else
Packet4i aux = _mm_srai_epi32(a,31);
return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pfrexp<Packet4f>(const Packet4f& a, Packet4f& exponent) {
return pfrexp_float(a,exponent);
}
template<> EIGEN_STRONG_INLINE Packet4f pldexp<Packet4f>(const Packet4f& a, const Packet4f& exponent) {
return pldexp_float(a,exponent);
}
template<> EIGEN_STRONG_INLINE Packet2d pldexp<Packet2d>(const Packet2d& a, const Packet2d& exponent) {
const Packet4i cst_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
Packet4i emm0 = _mm_cvttpd_epi32(exponent);
emm0 = padd(emm0, cst_1023_0);
emm0 = _mm_slli_epi32(emm0, 20);
emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
return pmul(a, Packet2d(_mm_castsi128_pd(emm0)));
}
// with AVX, the default implementations based on pload1 are faster
#ifndef __AVX__
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
a3 = pload<Packet4f>(a);
a0 = vec4f_swizzle1(a3, 0,0,0,0);
a1 = vec4f_swizzle1(a3, 1,1,1,1);
a2 = vec4f_swizzle1(a3, 2,2,2,2);
a3 = vec4f_swizzle1(a3, 3,3,3,3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
#ifdef EIGEN_VECTORIZE_SSE3
a0 = _mm_loaddup_pd(a+0);
a1 = _mm_loaddup_pd(a+1);
a2 = _mm_loaddup_pd(a+2);
a3 = _mm_loaddup_pd(a+3);
#else
a1 = pload<Packet2d>(a);
a0 = vec2d_swizzle1(a1, 0,0);
a1 = vec2d_swizzle1(a1, 1,1);
a3 = pload<Packet2d>(a+2);
a2 = vec2d_swizzle1(a3, 0,0);
a3 = vec2d_swizzle1(a3, 1,1);
#endif
}
#endif
EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
{
vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
}
#ifdef EIGEN_VECTORIZE_SSE3
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
return _mm_hadd_pd(vecs[0], vecs[1]);
}
#else
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
Packet4f tmp0, tmp1, tmp2;
tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
tmp0 = _mm_add_ps(tmp0, tmp1);
tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
tmp1 = _mm_add_ps(tmp1, tmp2);
tmp2 = _mm_movehl_ps(tmp1, tmp0);
tmp0 = _mm_movelh_ps(tmp0, tmp1);
return _mm_add_ps(tmp0, tmp2);
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
}
#endif // SSE3
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
// Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
// (from Nehalem to Haswell)
// #ifdef EIGEN_VECTORIZE_SSE3
// Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3));
// return pfirst<Packet4f>(_mm_hadd_ps(tmp, tmp));
// #else
Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
return pfirst<Packet4f>(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
// #endif
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
// Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
// (from Nehalem to Haswell)
// #ifdef EIGEN_VECTORIZE_SSE3
// return pfirst<Packet2d>(_mm_hadd_pd(a, a));
// #else
return pfirst<Packet2d>(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
// #endif
}
#ifdef EIGEN_VECTORIZE_SSSE3
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i tmp0 = _mm_hadd_epi32(a,a);
return pfirst<Packet4i>(_mm_hadd_epi32(tmp0,tmp0));
}
#else
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
return pfirst(tmp) + pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1));
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i tmp0, tmp1, tmp2;
tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
tmp0 = _mm_add_epi32(tmp0, tmp1);
tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
tmp1 = _mm_add_epi32(tmp1, tmp2);
tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
return _mm_add_epi32(tmp0, tmp2);
}
#endif
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
return pfirst<Packet4f>(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst<Packet2d>(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., reusing pmul is very slow !)
// TODO try to call _mm_mul_epu32 directly
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return (aux[0] * aux[1]) * (aux[2] * aux[3]);
}
// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
return pfirst<Packet4f>(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst<Packet2d>(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
return pfirst<Packet4i>(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
#else
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
return aux0<aux2 ? aux0 : aux2;
#endif // EIGEN_VECTORIZE_SSE4_1
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
return pfirst<Packet4f>(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst<Packet2d>(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
return pfirst<Packet4i>(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
#else
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
return aux0>aux2 ? aux0 : aux2;
#endif // EIGEN_VECTORIZE_SSE4_1
}
// not needed yet
// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet4f& x)
// {
// return _mm_movemask_ps(x) == 0xF;
// }
template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x)
{
return _mm_movemask_ps(x) != 0x0;
}
#if EIGEN_COMP_GNUC
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
// {
// Packet4f res = b;
// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
// return res;
// }
// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i)
// {
// Packet4i res = a;
// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
// return res;
// }
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
// SSSE3 versions
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
{
if (Offset!=0)
first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
if (Offset!=0)
first = _mm_alignr_epi8(second,first, Offset*4);
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset==1)
first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
}
};
#else
// SSE2 versions
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
{
if (Offset==1)
{
first = _mm_move_ss(first,second);
first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
}
else if (Offset==2)
{
first = _mm_movehl_ps(first,first);
first = _mm_movelh_ps(first,second);
}
else if (Offset==3)
{
first = _mm_move_ss(first,second);
first = _mm_shuffle_ps(first,second,0x93);
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
if (Offset==1)
{
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
first = _mm_shuffle_epi32(first,0x39);
}
else if (Offset==2)
{
first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
}
else if (Offset==3)
{
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset==1)
{
first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
}
}
};
#endif
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
_MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
__m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]);
kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]);
kernel.packet[1] = tmp;
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
__m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]);
__m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]);
__m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]);
__m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = _mm_unpacklo_epi64(T0, T1);
kernel.packet[1] = _mm_unpackhi_epi64(T0, T1);
kernel.packet[2] = _mm_unpacklo_epi64(T2, T3);
kernel.packet[3] = _mm_unpackhi_epi64(T2, T3);
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
const __m128i zero = _mm_setzero_si128();
const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
__m128i false_mask = _mm_cmpeq_epi32(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_epi8(thenPacket, elsePacket, false_mask);
#else
return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) {
const __m128 zero = _mm_setzero_ps();
const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
__m128 false_mask = _mm_cmpeq_ps(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_ps(thenPacket, elsePacket, false_mask);
#else
return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
const __m128d zero = _mm_setzero_pd();
const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]);
__m128d false_mask = _mm_cmpeq_pd(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_pd(thenPacket, elsePacket, false_mask);
#else
return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pinsertfirst(const Packet4f& a, float b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_ps(a,pset1<Packet4f>(b),1);
#else
return _mm_move_ss(a, _mm_load_ss(&b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pinsertfirst(const Packet2d& a, double b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_pd(a,pset1<Packet2d>(b),1);
#else
return _mm_move_sd(a, _mm_load_sd(&b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pinsertlast(const Packet4f& a, float b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_ps(a,pset1<Packet4f>(b),(1<<3));
#else
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x0,0x0,0x0,0xFFFFFFFF));
return _mm_or_ps(_mm_andnot_ps(mask, a), _mm_and_ps(mask, pset1<Packet4f>(b)));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pinsertlast(const Packet2d& a, double b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_pd(a,pset1<Packet2d>(b),(1<<1));
#else
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x0,0xFFFFFFFF,0xFFFFFFFF));
return _mm_or_pd(_mm_andnot_pd(mask, a), _mm_and_pd(mask, pset1<Packet2d>(b)));
#endif
}
// Scalar path for pmadd with FMA to ensure consistency with vectorized path.
#ifdef EIGEN_VECTORIZE_FMA
template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) {
return ::fmaf(a,b,c);
}
template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) {
return ::fma(a,b,c);
}
#endif
// Packet math for Eigen::half
// Disable the following code since it's broken on too many platforms / compilers.
//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC)
#if 0
typedef struct {
__m64 x;
} Packet4h;
template<> struct is_arithmetic<Packet4h> { enum { value = true }; };
template <>
struct packet_traits<Eigen::half> : default_packet_traits {
typedef Packet4h type;
// There is no half-size packet for Packet4h.
typedef Packet4h half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasBlend = 0
};
};
template<> struct unpacket_traits<Packet4h> { typedef Eigen::half type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4h half; };
template<> EIGEN_STRONG_INLINE Packet4h pset1<Packet4h>(const Eigen::half& from) {
Packet4h result;
result.x = _mm_set1_pi16(from.x);
return result;
}
template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet4h>(const Packet4h& from) {
return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_cvtsi64_si32(from.x)));
}
template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4h padd<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha + hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h psub<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha - hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha - hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha - hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha - hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h pmul<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha * hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h pdiv<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha / hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha / hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha / hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha / hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h pload<Packet4h>(const Eigen::half* from) {
Packet4h result;
result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h ploadu<Packet4h>(const Eigen::half* from) {
Packet4h result;
result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet4h& from) {
__int64_t r = _mm_cvtm64_si64(from.x);
*(reinterpret_cast<__int64_t*>(to)) = r;
}
template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet4h& from) {
__int64_t r = _mm_cvtm64_si64(from.x);
*(reinterpret_cast<__int64_t*>(to)) = r;
}
template<> EIGEN_STRONG_INLINE Packet4h
ploadquad<Packet4h>(const Eigen::half* from) {
return pset1<Packet4h>(*from);
}
template<> EIGEN_STRONG_INLINE Packet4h pgather<Eigen::half, Packet4h>(const Eigen::half* from, Index stride)
{
Packet4h result;
result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
return result;
}
template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet4h>(Eigen::half* to, const Packet4h& from, Index stride)
{
__int64_t a = _mm_cvtm64_si64(from.x);
to[stride*0].x = static_cast<unsigned short>(a);
to[stride*1].x = static_cast<unsigned short>(a >> 16);
to[stride*2].x = static_cast<unsigned short>(a >> 32);
to[stride*3].x = static_cast<unsigned short>(a >> 48);
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet4h,4>& kernel) {
__m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x);
__m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x);
__m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x);
__m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x);
kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1);
kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1);
kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3);
kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3);
}
#endif
} // end namespace internal
} // end namespace Eigen
#if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900
// PGI++ does not define the following intrinsics in C++ mode.
static inline __m128 _mm_castpd_ps (__m128d x) { return reinterpret_cast<__m128&>(x); }
static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); }
static inline __m128d _mm_castps_pd (__m128 x) { return reinterpret_cast<__m128d&>(x); }
static inline __m128i _mm_castps_si128(__m128 x) { return reinterpret_cast<__m128i&>(x); }
static inline __m128 _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x); }
static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); }
#endif
#endif // EIGEN_PACKET_MATH_SSE_H