mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-07 13:33:24 +08:00
685 lines
28 KiB
C++
Executable File
685 lines
28 KiB
C++
Executable File
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_PARTIAL_REDUX_H
|
|
#define EIGEN_PARTIAL_REDUX_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class PartialReduxExpr
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Generic expression of a partially reduxed matrix
|
|
*
|
|
* \tparam MatrixType the type of the matrix we are applying the redux operation
|
|
* \tparam MemberOp type of the member functor
|
|
* \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
|
|
*
|
|
* This class represents an expression of a partial redux operator of a matrix.
|
|
* It is the return type of some VectorwiseOp functions,
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* \sa class VectorwiseOp
|
|
*/
|
|
|
|
template< typename MatrixType, typename MemberOp, int Direction>
|
|
class PartialReduxExpr;
|
|
|
|
namespace internal {
|
|
template<typename MatrixType, typename MemberOp, int Direction>
|
|
struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
|
: traits<MatrixType>
|
|
{
|
|
typedef typename MemberOp::result_type Scalar;
|
|
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
|
typedef typename traits<MatrixType>::XprKind XprKind;
|
|
typedef typename MatrixType::Scalar InputScalar;
|
|
enum {
|
|
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
|
|
Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0,
|
|
TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
|
|
};
|
|
};
|
|
}
|
|
|
|
template< typename MatrixType, typename MemberOp, int Direction>
|
|
class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type,
|
|
internal::no_assignment_operator
|
|
{
|
|
public:
|
|
|
|
typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
|
|
: m_matrix(mat), m_functor(func) {}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
|
|
EIGEN_DEVICE_FUNC
|
|
Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
typename MatrixType::Nested nestedExpression() const { return m_matrix; }
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const MemberOp& functor() const { return m_functor; }
|
|
|
|
protected:
|
|
typename MatrixType::Nested m_matrix;
|
|
const MemberOp m_functor;
|
|
};
|
|
|
|
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
|
|
template <typename ResultType> \
|
|
struct member_##MEMBER { \
|
|
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
|
|
typedef ResultType result_type; \
|
|
template<typename Scalar, int Size> struct Cost \
|
|
{ enum { value = COST }; }; \
|
|
template<typename XprType> \
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \
|
|
ResultType operator()(const XprType& mat) const \
|
|
{ return mat.MEMBER(); } \
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
|
|
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
|
|
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
|
EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
|
|
|
|
template <int p, typename ResultType>
|
|
struct member_lpnorm {
|
|
typedef ResultType result_type;
|
|
template<typename Scalar, int Size> struct Cost
|
|
{ enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; };
|
|
EIGEN_DEVICE_FUNC member_lpnorm() {}
|
|
template<typename XprType>
|
|
EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const
|
|
{ return mat.template lpNorm<p>(); }
|
|
};
|
|
|
|
template <typename BinaryOp, typename Scalar>
|
|
struct member_redux {
|
|
typedef typename result_of<
|
|
BinaryOp(Scalar,Scalar)
|
|
>::type result_type;
|
|
template<typename _Scalar, int Size> struct Cost
|
|
{ enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
|
|
EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {}
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const
|
|
{ return mat.redux(m_functor); }
|
|
const BinaryOp m_functor;
|
|
};
|
|
}
|
|
|
|
/** \class VectorwiseOp
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Pseudo expression providing partial reduction operations
|
|
*
|
|
* \param ExpressionType the type of the object on which to do partial reductions
|
|
* \param Direction indicates the direction of the redux (#Vertical or #Horizontal)
|
|
*
|
|
* This class represents a pseudo expression with partial reduction features.
|
|
* It is the return type of DenseBase::colwise() and DenseBase::rowwise()
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* Example: \include MatrixBase_colwise.cpp
|
|
* Output: \verbinclude MatrixBase_colwise.out
|
|
*
|
|
* \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
|
|
*/
|
|
template<typename ExpressionType, int Direction> class VectorwiseOp
|
|
{
|
|
public:
|
|
|
|
typedef typename ExpressionType::Scalar Scalar;
|
|
typedef typename ExpressionType::RealScalar RealScalar;
|
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
|
typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested;
|
|
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
|
|
|
|
template<template<typename _Scalar> class Functor,
|
|
typename Scalar_=Scalar> struct ReturnType
|
|
{
|
|
typedef PartialReduxExpr<ExpressionType,
|
|
Functor<Scalar_>,
|
|
Direction
|
|
> Type;
|
|
};
|
|
|
|
template<typename BinaryOp> struct ReduxReturnType
|
|
{
|
|
typedef PartialReduxExpr<ExpressionType,
|
|
internal::member_redux<BinaryOp,Scalar>,
|
|
Direction
|
|
> Type;
|
|
};
|
|
|
|
enum {
|
|
isVertical = (Direction==Vertical) ? 1 : 0,
|
|
isHorizontal = (Direction==Horizontal) ? 1 : 0
|
|
};
|
|
|
|
protected:
|
|
|
|
/** \internal
|
|
* \returns the i-th subvector according to the \c Direction */
|
|
typedef typename internal::conditional<isVertical,
|
|
typename ExpressionType::ColXpr,
|
|
typename ExpressionType::RowXpr>::type SubVector;
|
|
EIGEN_DEVICE_FUNC
|
|
SubVector subVector(Index i)
|
|
{
|
|
return SubVector(m_matrix.derived(),i);
|
|
}
|
|
|
|
/** \internal
|
|
* \returns the number of subvectors in the direction \c Direction */
|
|
EIGEN_DEVICE_FUNC
|
|
Index subVectors() const
|
|
{ return isVertical?m_matrix.cols():m_matrix.rows(); }
|
|
|
|
template<typename OtherDerived> struct ExtendedType {
|
|
typedef Replicate<OtherDerived,
|
|
isVertical ? 1 : ExpressionType::RowsAtCompileTime,
|
|
isHorizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
|
|
};
|
|
|
|
/** \internal
|
|
* Replicates a vector to match the size of \c *this */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
typename ExtendedType<OtherDerived>::Type
|
|
extendedTo(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1),
|
|
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1),
|
|
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
|
|
return typename ExtendedType<OtherDerived>::Type
|
|
(other.derived(),
|
|
isVertical ? 1 : m_matrix.rows(),
|
|
isHorizontal ? 1 : m_matrix.cols());
|
|
}
|
|
|
|
template<typename OtherDerived> struct OppositeExtendedType {
|
|
typedef Replicate<OtherDerived,
|
|
isHorizontal ? 1 : ExpressionType::RowsAtCompileTime,
|
|
isVertical ? 1 : ExpressionType::ColsAtCompileTime> Type;
|
|
};
|
|
|
|
/** \internal
|
|
* Replicates a vector in the opposite direction to match the size of \c *this */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
typename OppositeExtendedType<OtherDerived>::Type
|
|
extendedToOpposite(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1),
|
|
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1),
|
|
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
|
|
return typename OppositeExtendedType<OtherDerived>::Type
|
|
(other.derived(),
|
|
isHorizontal ? 1 : m_matrix.rows(),
|
|
isVertical ? 1 : m_matrix.cols());
|
|
}
|
|
|
|
public:
|
|
EIGEN_DEVICE_FUNC
|
|
explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
|
|
|
|
/** \internal */
|
|
EIGEN_DEVICE_FUNC
|
|
inline const ExpressionType& _expression() const { return m_matrix; }
|
|
|
|
/** \returns a row or column vector expression of \c *this reduxed by \a func
|
|
*
|
|
* The template parameter \a BinaryOp is the type of the functor
|
|
* of the custom redux operator. Note that func must be an associative operator.
|
|
*
|
|
* \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
|
|
*/
|
|
template<typename BinaryOp>
|
|
EIGEN_DEVICE_FUNC
|
|
const typename ReduxReturnType<BinaryOp>::Type
|
|
redux(const BinaryOp& func = BinaryOp()) const
|
|
{ return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func)); }
|
|
|
|
typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
|
|
typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
|
|
typedef typename ReturnType<internal::member_squaredNorm,RealScalar>::Type SquaredNormReturnType;
|
|
typedef typename ReturnType<internal::member_norm,RealScalar>::Type NormReturnType;
|
|
typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType;
|
|
typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType;
|
|
typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType;
|
|
typedef typename ReturnType<internal::member_sum>::Type SumReturnType;
|
|
typedef typename ReturnType<internal::member_mean>::Type MeanReturnType;
|
|
typedef typename ReturnType<internal::member_all>::Type AllReturnType;
|
|
typedef typename ReturnType<internal::member_any>::Type AnyReturnType;
|
|
typedef PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> CountReturnType;
|
|
typedef typename ReturnType<internal::member_prod>::Type ProdReturnType;
|
|
typedef Reverse<ExpressionType, Direction> ReverseReturnType;
|
|
|
|
template<int p> struct LpNormReturnType {
|
|
typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar>,Direction> Type;
|
|
};
|
|
|
|
/** \returns a row (or column) vector expression of the smallest coefficient
|
|
* of each column (or row) of the referenced expression.
|
|
*
|
|
* \warning the result is undefined if \c *this contains NaN.
|
|
*
|
|
* Example: \include PartialRedux_minCoeff.cpp
|
|
* Output: \verbinclude PartialRedux_minCoeff.out
|
|
*
|
|
* \sa DenseBase::minCoeff() */
|
|
EIGEN_DEVICE_FUNC
|
|
const MinCoeffReturnType minCoeff() const
|
|
{ return MinCoeffReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the largest coefficient
|
|
* of each column (or row) of the referenced expression.
|
|
*
|
|
* \warning the result is undefined if \c *this contains NaN.
|
|
*
|
|
* Example: \include PartialRedux_maxCoeff.cpp
|
|
* Output: \verbinclude PartialRedux_maxCoeff.out
|
|
*
|
|
* \sa DenseBase::maxCoeff() */
|
|
EIGEN_DEVICE_FUNC
|
|
const MaxCoeffReturnType maxCoeff() const
|
|
{ return MaxCoeffReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the squared norm
|
|
* of each column (or row) of the referenced expression.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* Example: \include PartialRedux_squaredNorm.cpp
|
|
* Output: \verbinclude PartialRedux_squaredNorm.out
|
|
*
|
|
* \sa DenseBase::squaredNorm() */
|
|
EIGEN_DEVICE_FUNC
|
|
const SquaredNormReturnType squaredNorm() const
|
|
{ return SquaredNormReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the norm
|
|
* of each column (or row) of the referenced expression.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* Example: \include PartialRedux_norm.cpp
|
|
* Output: \verbinclude PartialRedux_norm.out
|
|
*
|
|
* \sa DenseBase::norm() */
|
|
EIGEN_DEVICE_FUNC
|
|
const NormReturnType norm() const
|
|
{ return NormReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the norm
|
|
* of each column (or row) of the referenced expression.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* Example: \include PartialRedux_norm.cpp
|
|
* Output: \verbinclude PartialRedux_norm.out
|
|
*
|
|
* \sa DenseBase::norm() */
|
|
template<int p>
|
|
EIGEN_DEVICE_FUNC
|
|
const typename LpNormReturnType<p>::Type lpNorm() const
|
|
{ return typename LpNormReturnType<p>::Type(_expression()); }
|
|
|
|
|
|
/** \returns a row (or column) vector expression of the norm
|
|
* of each column (or row) of the referenced expression, using
|
|
* Blue's algorithm.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* \sa DenseBase::blueNorm() */
|
|
EIGEN_DEVICE_FUNC
|
|
const BlueNormReturnType blueNorm() const
|
|
{ return BlueNormReturnType(_expression()); }
|
|
|
|
|
|
/** \returns a row (or column) vector expression of the norm
|
|
* of each column (or row) of the referenced expression, avoiding
|
|
* underflow and overflow.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* \sa DenseBase::stableNorm() */
|
|
EIGEN_DEVICE_FUNC
|
|
const StableNormReturnType stableNorm() const
|
|
{ return StableNormReturnType(_expression()); }
|
|
|
|
|
|
/** \returns a row (or column) vector expression of the norm
|
|
* of each column (or row) of the referenced expression, avoiding
|
|
* underflow and overflow using a concatenation of hypot() calls.
|
|
* This is a vector with real entries, even if the original matrix has complex entries.
|
|
*
|
|
* \sa DenseBase::hypotNorm() */
|
|
EIGEN_DEVICE_FUNC
|
|
const HypotNormReturnType hypotNorm() const
|
|
{ return HypotNormReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the sum
|
|
* of each column (or row) of the referenced expression.
|
|
*
|
|
* Example: \include PartialRedux_sum.cpp
|
|
* Output: \verbinclude PartialRedux_sum.out
|
|
*
|
|
* \sa DenseBase::sum() */
|
|
EIGEN_DEVICE_FUNC
|
|
const SumReturnType sum() const
|
|
{ return SumReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the mean
|
|
* of each column (or row) of the referenced expression.
|
|
*
|
|
* \sa DenseBase::mean() */
|
|
EIGEN_DEVICE_FUNC
|
|
const MeanReturnType mean() const
|
|
{ return MeanReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression representing
|
|
* whether \b all coefficients of each respective column (or row) are \c true.
|
|
* This expression can be assigned to a vector with entries of type \c bool.
|
|
*
|
|
* \sa DenseBase::all() */
|
|
EIGEN_DEVICE_FUNC
|
|
const AllReturnType all() const
|
|
{ return AllReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression representing
|
|
* whether \b at \b least one coefficient of each respective column (or row) is \c true.
|
|
* This expression can be assigned to a vector with entries of type \c bool.
|
|
*
|
|
* \sa DenseBase::any() */
|
|
EIGEN_DEVICE_FUNC
|
|
const AnyReturnType any() const
|
|
{ return AnyReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression representing
|
|
* the number of \c true coefficients of each respective column (or row).
|
|
* This expression can be assigned to a vector whose entries have the same type as is used to
|
|
* index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t .
|
|
*
|
|
* Example: \include PartialRedux_count.cpp
|
|
* Output: \verbinclude PartialRedux_count.out
|
|
*
|
|
* \sa DenseBase::count() */
|
|
EIGEN_DEVICE_FUNC
|
|
const CountReturnType count() const
|
|
{ return CountReturnType(_expression()); }
|
|
|
|
/** \returns a row (or column) vector expression of the product
|
|
* of each column (or row) of the referenced expression.
|
|
*
|
|
* Example: \include PartialRedux_prod.cpp
|
|
* Output: \verbinclude PartialRedux_prod.out
|
|
*
|
|
* \sa DenseBase::prod() */
|
|
EIGEN_DEVICE_FUNC
|
|
const ProdReturnType prod() const
|
|
{ return ProdReturnType(_expression()); }
|
|
|
|
|
|
/** \returns a matrix expression
|
|
* where each column (or row) are reversed.
|
|
*
|
|
* Example: \include Vectorwise_reverse.cpp
|
|
* Output: \verbinclude Vectorwise_reverse.out
|
|
*
|
|
* \sa DenseBase::reverse() */
|
|
EIGEN_DEVICE_FUNC
|
|
const ReverseReturnType reverse() const
|
|
{ return ReverseReturnType( _expression() ); }
|
|
|
|
typedef Replicate<ExpressionType,(isVertical?Dynamic:1),(isHorizontal?Dynamic:1)> ReplicateReturnType;
|
|
EIGEN_DEVICE_FUNC
|
|
const ReplicateReturnType replicate(Index factor) const;
|
|
|
|
/**
|
|
* \return an expression of the replication of each column (or row) of \c *this
|
|
*
|
|
* Example: \include DirectionWise_replicate.cpp
|
|
* Output: \verbinclude DirectionWise_replicate.out
|
|
*
|
|
* \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
|
|
*/
|
|
// NOTE implemented here because of sunstudio's compilation errors
|
|
// isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator
|
|
template<int Factor> const Replicate<ExpressionType,isVertical*Factor+isHorizontal,isHorizontal*Factor+isVertical>
|
|
EIGEN_DEVICE_FUNC
|
|
replicate(Index factor = Factor) const
|
|
{
|
|
return Replicate<ExpressionType,(isVertical?Factor:1),(isHorizontal?Factor:1)>
|
|
(_expression(),isVertical?factor:1,isHorizontal?factor:1);
|
|
}
|
|
|
|
/////////// Artithmetic operators ///////////
|
|
|
|
/** Copies the vector \a other to each subvector of \c *this */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
ExpressionType& operator=(const DenseBase<OtherDerived>& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
//eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
|
|
return const_cast<ExpressionType&>(m_matrix = extendedTo(other.derived()));
|
|
}
|
|
|
|
/** Adds the vector \a other to each subvector of \c *this */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return const_cast<ExpressionType&>(m_matrix += extendedTo(other.derived()));
|
|
}
|
|
|
|
/** Substracts the vector \a other to each subvector of \c *this */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return const_cast<ExpressionType&>(m_matrix -= extendedTo(other.derived()));
|
|
}
|
|
|
|
/** Multiples each subvector of \c *this by the vector \a other */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
m_matrix *= extendedTo(other.derived());
|
|
return const_cast<ExpressionType&>(m_matrix);
|
|
}
|
|
|
|
/** Divides each subvector of \c *this by the vector \a other */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
ExpressionType& operator/=(const DenseBase<OtherDerived>& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
m_matrix /= extendedTo(other.derived());
|
|
return const_cast<ExpressionType&>(m_matrix);
|
|
}
|
|
|
|
/** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
|
|
template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
|
CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
|
|
const ExpressionTypeNestedCleaned,
|
|
const typename ExtendedType<OtherDerived>::Type>
|
|
operator+(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return m_matrix + extendedTo(other.derived());
|
|
}
|
|
|
|
/** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
|
|
const ExpressionTypeNestedCleaned,
|
|
const typename ExtendedType<OtherDerived>::Type>
|
|
operator-(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return m_matrix - extendedTo(other.derived());
|
|
}
|
|
|
|
/** Returns the expression where each subvector is the product of the vector \a other
|
|
* by the corresponding subvector of \c *this */
|
|
template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
|
CwiseBinaryOp<internal::scalar_product_op<Scalar>,
|
|
const ExpressionTypeNestedCleaned,
|
|
const typename ExtendedType<OtherDerived>::Type>
|
|
EIGEN_DEVICE_FUNC
|
|
operator*(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return m_matrix * extendedTo(other.derived());
|
|
}
|
|
|
|
/** Returns the expression where each subvector is the quotient of the corresponding
|
|
* subvector of \c *this by the vector \a other */
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
|
|
const ExpressionTypeNestedCleaned,
|
|
const typename ExtendedType<OtherDerived>::Type>
|
|
operator/(const DenseBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
|
|
EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
|
|
return m_matrix / extendedTo(other.derived());
|
|
}
|
|
|
|
/** \returns an expression where each column of row of the referenced matrix are normalized.
|
|
* The referenced matrix is \b not modified.
|
|
* \sa MatrixBase::normalized(), normalize()
|
|
*/
|
|
EIGEN_DEVICE_FUNC
|
|
CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
|
|
const ExpressionTypeNestedCleaned,
|
|
const typename OppositeExtendedType<typename ReturnType<internal::member_norm,RealScalar>::Type>::Type>
|
|
normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); }
|
|
|
|
|
|
/** Normalize in-place each row or columns of the referenced matrix.
|
|
* \sa MatrixBase::normalize(), normalized()
|
|
*/
|
|
EIGEN_DEVICE_FUNC void normalize() {
|
|
m_matrix = this->normalized();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC inline void reverseInPlace();
|
|
|
|
/////////// Geometry module ///////////
|
|
|
|
typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType;
|
|
HomogeneousReturnType homogeneous() const;
|
|
|
|
typedef typename ExpressionType::PlainObject CrossReturnType;
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
|
|
|
|
enum {
|
|
HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
|
|
: internal::traits<ExpressionType>::ColsAtCompileTime,
|
|
HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
|
|
};
|
|
typedef Block<const ExpressionType,
|
|
Direction==Vertical ? int(HNormalized_SizeMinusOne)
|
|
: int(internal::traits<ExpressionType>::RowsAtCompileTime),
|
|
Direction==Horizontal ? int(HNormalized_SizeMinusOne)
|
|
: int(internal::traits<ExpressionType>::ColsAtCompileTime)>
|
|
HNormalized_Block;
|
|
typedef Block<const ExpressionType,
|
|
Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
|
|
Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
|
|
HNormalized_Factors;
|
|
typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
|
|
const HNormalized_Block,
|
|
const Replicate<HNormalized_Factors,
|
|
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
|
Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
|
|
HNormalizedReturnType;
|
|
|
|
const HNormalizedReturnType hnormalized() const;
|
|
|
|
protected:
|
|
ExpressionTypeNested m_matrix;
|
|
};
|
|
|
|
//const colwise moved to DenseBase.h due to CUDA compiler bug
|
|
|
|
|
|
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
|
|
*
|
|
* \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
|
*/
|
|
template<typename Derived>
|
|
inline typename DenseBase<Derived>::ColwiseReturnType
|
|
DenseBase<Derived>::colwise()
|
|
{
|
|
return ColwiseReturnType(derived());
|
|
}
|
|
|
|
//const rowwise moved to DenseBase.h due to CUDA compiler bug
|
|
|
|
|
|
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
|
|
*
|
|
* \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
|
|
*/
|
|
template<typename Derived>
|
|
inline typename DenseBase<Derived>::RowwiseReturnType
|
|
DenseBase<Derived>::rowwise()
|
|
{
|
|
return RowwiseReturnType(derived());
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_PARTIAL_REDUX_H
|