mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
442 lines
16 KiB
C++
442 lines
16 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MATRIX_EXPONENTIAL
|
|
#define EIGEN_MATRIX_EXPONENTIAL
|
|
|
|
#include "StemFunction.h"
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
/** \brief Scaling operator.
|
|
*
|
|
* This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
|
|
*/
|
|
template <typename RealScalar>
|
|
struct MatrixExponentialScalingOp
|
|
{
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] squarings The integer \f$ s \f$ in this document.
|
|
*/
|
|
MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
|
|
|
|
|
|
/** \brief Scale a matrix coefficient.
|
|
*
|
|
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
|
|
*/
|
|
inline const RealScalar operator() (const RealScalar& x) const
|
|
{
|
|
using std::ldexp;
|
|
return ldexp(x, -m_squarings);
|
|
}
|
|
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
/** \brief Scale a matrix coefficient.
|
|
*
|
|
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
|
|
*/
|
|
inline const ComplexScalar operator() (const ComplexScalar& x) const
|
|
{
|
|
using std::ldexp;
|
|
return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
|
|
}
|
|
|
|
private:
|
|
int m_squarings;
|
|
};
|
|
|
|
/** \brief Compute the (3,3)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*/
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
}
|
|
|
|
/** \brief Compute the (5,5)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*/
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType A4 = A2 * A2;
|
|
const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
}
|
|
|
|
/** \brief Compute the (7,7)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*/
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType A4 = A2 * A2;
|
|
const MatrixType A6 = A4 * A2;
|
|
const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
|
|
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
|
|
}
|
|
|
|
/** \brief Compute the (9,9)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*/
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
|
|
2162160.L, 110880.L, 3960.L, 90.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType A4 = A2 * A2;
|
|
const MatrixType A6 = A4 * A2;
|
|
const MatrixType A8 = A6 * A2;
|
|
const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
|
|
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
}
|
|
|
|
/** \brief Compute the (13,13)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*/
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
|
|
1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
|
|
33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType A4 = A2 * A2;
|
|
const MatrixType A6 = A4 * A2;
|
|
V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
|
|
MatrixType tmp = A6 * V;
|
|
tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
|
|
V.noalias() = A6 * tmp;
|
|
V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
}
|
|
|
|
/** \brief Compute the (17,17)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* This function activates only if your long double is double-double or quadruple.
|
|
*/
|
|
#if LDBL_MANT_DIG > 64
|
|
template <typename MatA, typename MatU, typename MatV>
|
|
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
|
|
{
|
|
typedef typename MatA::PlainObject MatrixType;
|
|
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
|
const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
|
|
100610229646136770560000.L, 15720348382208870400000.L,
|
|
1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
|
|
595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
|
|
33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
|
|
46512.L, 306.L, 1.L};
|
|
const MatrixType A2 = A * A;
|
|
const MatrixType A4 = A2 * A2;
|
|
const MatrixType A6 = A4 * A2;
|
|
const MatrixType A8 = A4 * A4;
|
|
V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
|
|
MatrixType tmp = A8 * V;
|
|
tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
|
|
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
|
|
U.noalias() = A * tmp;
|
|
tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
|
|
V.noalias() = tmp * A8;
|
|
V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
|
|
+ b[0] * MatrixType::Identity(A.rows(), A.cols());
|
|
}
|
|
#endif
|
|
|
|
template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
|
|
struct matrix_exp_computeUV
|
|
{
|
|
/** \brief Compute Padé approximant to the exponential.
|
|
*
|
|
* Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé
|
|
* approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
|
|
* denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings
|
|
* are chosen such that the approximation error is no more than the round-off error.
|
|
*/
|
|
static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct matrix_exp_computeUV<MatrixType, float>
|
|
{
|
|
template <typename ArgType>
|
|
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
|
|
{
|
|
using std::frexp;
|
|
using std::pow;
|
|
const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
|
|
squarings = 0;
|
|
if (l1norm < 4.258730016922831e-001f) {
|
|
matrix_exp_pade3(arg, U, V);
|
|
} else if (l1norm < 1.880152677804762e+000f) {
|
|
matrix_exp_pade5(arg, U, V);
|
|
} else {
|
|
const float maxnorm = 3.925724783138660f;
|
|
frexp(l1norm / maxnorm, &squarings);
|
|
if (squarings < 0) squarings = 0;
|
|
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
|
|
matrix_exp_pade7(A, U, V);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct matrix_exp_computeUV<MatrixType, double>
|
|
{
|
|
template <typename ArgType>
|
|
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
|
|
{
|
|
using std::frexp;
|
|
using std::pow;
|
|
const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
|
|
squarings = 0;
|
|
if (l1norm < 1.495585217958292e-002) {
|
|
matrix_exp_pade3(arg, U, V);
|
|
} else if (l1norm < 2.539398330063230e-001) {
|
|
matrix_exp_pade5(arg, U, V);
|
|
} else if (l1norm < 9.504178996162932e-001) {
|
|
matrix_exp_pade7(arg, U, V);
|
|
} else if (l1norm < 2.097847961257068e+000) {
|
|
matrix_exp_pade9(arg, U, V);
|
|
} else {
|
|
const double maxnorm = 5.371920351148152;
|
|
frexp(l1norm / maxnorm, &squarings);
|
|
if (squarings < 0) squarings = 0;
|
|
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings));
|
|
matrix_exp_pade13(A, U, V);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct matrix_exp_computeUV<MatrixType, long double>
|
|
{
|
|
template <typename ArgType>
|
|
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
|
|
{
|
|
#if LDBL_MANT_DIG == 53 // double precision
|
|
matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
|
|
|
|
#else
|
|
|
|
using std::frexp;
|
|
using std::pow;
|
|
const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
|
|
squarings = 0;
|
|
|
|
#if LDBL_MANT_DIG <= 64 // extended precision
|
|
|
|
if (l1norm < 4.1968497232266989671e-003L) {
|
|
matrix_exp_pade3(arg, U, V);
|
|
} else if (l1norm < 1.1848116734693823091e-001L) {
|
|
matrix_exp_pade5(arg, U, V);
|
|
} else if (l1norm < 5.5170388480686700274e-001L) {
|
|
matrix_exp_pade7(arg, U, V);
|
|
} else if (l1norm < 1.3759868875587845383e+000L) {
|
|
matrix_exp_pade9(arg, U, V);
|
|
} else {
|
|
const long double maxnorm = 4.0246098906697353063L;
|
|
frexp(l1norm / maxnorm, &squarings);
|
|
if (squarings < 0) squarings = 0;
|
|
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
|
|
matrix_exp_pade13(A, U, V);
|
|
}
|
|
|
|
#elif LDBL_MANT_DIG <= 106 // double-double
|
|
|
|
if (l1norm < 3.2787892205607026992947488108213e-005L) {
|
|
matrix_exp_pade3(arg, U, V);
|
|
} else if (l1norm < 6.4467025060072760084130906076332e-003L) {
|
|
matrix_exp_pade5(arg, U, V);
|
|
} else if (l1norm < 6.8988028496595374751374122881143e-002L) {
|
|
matrix_exp_pade7(arg, U, V);
|
|
} else if (l1norm < 2.7339737518502231741495857201670e-001L) {
|
|
matrix_exp_pade9(arg, U, V);
|
|
} else if (l1norm < 1.3203382096514474905666448850278e+000L) {
|
|
matrix_exp_pade13(arg, U, V);
|
|
} else {
|
|
const long double maxnorm = 3.2579440895405400856599663723517L;
|
|
frexp(l1norm / maxnorm, &squarings);
|
|
if (squarings < 0) squarings = 0;
|
|
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
|
|
matrix_exp_pade17(A, U, V);
|
|
}
|
|
|
|
#elif LDBL_MANT_DIG <= 112 // quadruple precision
|
|
|
|
if (l1norm < 1.639394610288918690547467954466970e-005L) {
|
|
matrix_exp_pade3(arg, U, V);
|
|
} else if (l1norm < 4.253237712165275566025884344433009e-003L) {
|
|
matrix_exp_pade5(arg, U, V);
|
|
} else if (l1norm < 5.125804063165764409885122032933142e-002L) {
|
|
matrix_exp_pade7(arg, U, V);
|
|
} else if (l1norm < 2.170000765161155195453205651889853e-001L) {
|
|
matrix_exp_pade9(arg, U, V);
|
|
} else if (l1norm < 1.125358383453143065081397882891878e+000L) {
|
|
matrix_exp_pade13(arg, U, V);
|
|
} else {
|
|
const long double maxnorm = 2.884233277829519311757165057717815L;
|
|
frexp(l1norm / maxnorm, &squarings);
|
|
if (squarings < 0) squarings = 0;
|
|
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
|
|
matrix_exp_pade17(A, U, V);
|
|
}
|
|
|
|
#else
|
|
|
|
// this case should be handled in compute()
|
|
eigen_assert(false && "Bug in MatrixExponential");
|
|
|
|
#endif
|
|
#endif // LDBL_MANT_DIG
|
|
}
|
|
};
|
|
|
|
template<typename T> struct is_exp_known_type : false_type {};
|
|
template<> struct is_exp_known_type<float> : true_type {};
|
|
template<> struct is_exp_known_type<double> : true_type {};
|
|
#if LDBL_MANT_DIG <= 112
|
|
template<> struct is_exp_known_type<long double> : true_type {};
|
|
#endif
|
|
|
|
template <typename ArgType, typename ResultType>
|
|
void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
|
|
{
|
|
typedef typename ArgType::PlainObject MatrixType;
|
|
MatrixType U, V;
|
|
int squarings;
|
|
matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
|
|
MatrixType numer = U + V;
|
|
MatrixType denom = -U + V;
|
|
result = denom.partialPivLu().solve(numer);
|
|
for (int i=0; i<squarings; i++)
|
|
result *= result; // undo scaling by repeated squaring
|
|
}
|
|
|
|
|
|
/* Computes the matrix exponential
|
|
*
|
|
* \param arg argument of matrix exponential (should be plain object)
|
|
* \param result variable in which result will be stored
|
|
*/
|
|
template <typename ArgType, typename ResultType>
|
|
void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
|
|
{
|
|
typedef typename ArgType::PlainObject MatrixType;
|
|
typedef typename traits<MatrixType>::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename std::complex<RealScalar> ComplexScalar;
|
|
result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
|
|
}
|
|
|
|
} // end namespace Eigen::internal
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
*
|
|
* \brief Proxy for the matrix exponential of some matrix (expression).
|
|
*
|
|
* \tparam Derived Type of the argument to the matrix exponential.
|
|
*
|
|
* This class holds the argument to the matrix exponential until it is assigned or evaluated for
|
|
* some other reason (so the argument should not be changed in the meantime). It is the return type
|
|
* of MatrixBase::exp() and most of the time this is the only way it is used.
|
|
*/
|
|
template<typename Derived> struct MatrixExponentialReturnValue
|
|
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
|
|
{
|
|
typedef typename Derived::Index Index;
|
|
public:
|
|
/** \brief Constructor.
|
|
*
|
|
* \param src %Matrix (expression) forming the argument of the matrix exponential.
|
|
*/
|
|
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
|
|
|
|
/** \brief Compute the matrix exponential.
|
|
*
|
|
* \param result the matrix exponential of \p src in the constructor.
|
|
*/
|
|
template <typename ResultType>
|
|
inline void evalTo(ResultType& result) const
|
|
{
|
|
const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
|
|
internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
|
|
}
|
|
|
|
Index rows() const { return m_src.rows(); }
|
|
Index cols() const { return m_src.cols(); }
|
|
|
|
protected:
|
|
const typename internal::ref_selector<Derived>::type m_src;
|
|
};
|
|
|
|
namespace internal {
|
|
template<typename Derived>
|
|
struct traits<MatrixExponentialReturnValue<Derived> >
|
|
{
|
|
typedef typename Derived::PlainObject ReturnType;
|
|
};
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
|
|
{
|
|
eigen_assert(rows() == cols());
|
|
return MatrixExponentialReturnValue<Derived>(derived());
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MATRIX_EXPONENTIAL
|