mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
636 lines
25 KiB
C++
636 lines
25 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_DENSESTORAGEBASE_H
|
|
#define EIGEN_DENSESTORAGEBASE_H
|
|
|
|
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
|
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
|
|
#else
|
|
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
#endif
|
|
|
|
template <typename Derived, typename OtherDerived = Derived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct ei_conservative_resize_like_impl;
|
|
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct ei_matrix_swap_impl;
|
|
|
|
/**
|
|
* \brief Dense storage base class for matrices and arrays.
|
|
**/
|
|
template<typename Derived, template<typename> class _Base, int _Options>
|
|
class DenseStorageBase : public _Base<Derived>
|
|
{
|
|
public:
|
|
enum { Options = _Options };
|
|
typedef _Base<Derived> Base;
|
|
typedef typename Base::PlainObject PlainObject;
|
|
typedef typename Base::Scalar Scalar;
|
|
typedef typename Base::PacketScalar PacketScalar;
|
|
using Base::RowsAtCompileTime;
|
|
using Base::ColsAtCompileTime;
|
|
using Base::SizeAtCompileTime;
|
|
using Base::MaxRowsAtCompileTime;
|
|
using Base::MaxColsAtCompileTime;
|
|
using Base::MaxSizeAtCompileTime;
|
|
using Base::IsVectorAtCompileTime;
|
|
using Base::Flags;
|
|
|
|
friend class Eigen::Map<Derived, Unaligned>;
|
|
typedef class Eigen::Map<Derived, Unaligned> UnalignedMapType;
|
|
friend class Eigen::Map<Derived, Aligned>;
|
|
typedef class Eigen::Map<Derived, Aligned> AlignedMapType;
|
|
|
|
protected:
|
|
ei_matrix_storage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
|
|
|
|
public:
|
|
enum { NeedsToAlign = (!(Options&DontAlign))
|
|
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
|
|
|
|
Base& base() { return *static_cast<Base*>(this); }
|
|
const Base& base() const { return *static_cast<const Base*>(this); }
|
|
|
|
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
|
|
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
|
|
|
|
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
|
|
{
|
|
if(Flags & RowMajorBit)
|
|
return m_storage.data()[col + row * m_storage.cols()];
|
|
else // column-major
|
|
return m_storage.data()[row + col * m_storage.rows()];
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
|
|
{
|
|
return m_storage.data()[index];
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
|
|
{
|
|
if(Flags & RowMajorBit)
|
|
return m_storage.data()[col + row * m_storage.cols()];
|
|
else // column-major
|
|
return m_storage.data()[row + col * m_storage.rows()];
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
|
|
{
|
|
return m_storage.data()[index];
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
|
|
{
|
|
return ei_ploadt<Scalar, LoadMode>
|
|
(m_storage.data() + (Flags & RowMajorBit
|
|
? col + row * m_storage.cols()
|
|
: row + col * m_storage.rows()));
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
|
|
{
|
|
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
|
|
}
|
|
|
|
template<int StoreMode>
|
|
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
|
|
{
|
|
ei_pstoret<Scalar, PacketScalar, StoreMode>
|
|
(m_storage.data() + (Flags & RowMajorBit
|
|
? col + row * m_storage.cols()
|
|
: row + col * m_storage.rows()), x);
|
|
}
|
|
|
|
template<int StoreMode>
|
|
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
|
|
{
|
|
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
|
|
}
|
|
|
|
/** \returns a const pointer to the data array of this matrix */
|
|
EIGEN_STRONG_INLINE const Scalar *data() const
|
|
{ return m_storage.data(); }
|
|
|
|
/** \returns a pointer to the data array of this matrix */
|
|
EIGEN_STRONG_INLINE Scalar *data()
|
|
{ return m_storage.data(); }
|
|
|
|
inline int innerStride() const { return 1; }
|
|
inline int outerStride() const
|
|
{
|
|
static const int MaxInnerSize = Base::IsRowMajor ? MaxColsAtCompileTime : MaxRowsAtCompileTime;
|
|
return (!IsVectorAtCompileTime) && MaxInnerSize!=Dynamic ? MaxInnerSize : this->innerSize();
|
|
}
|
|
|
|
/** Resizes \c *this to a \a rows x \a cols matrix.
|
|
*
|
|
* This method is intended for dynamic-size matrices, although it is legal to call it on any
|
|
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
|
|
* of rows and/or of columns, you can use resize(NoChange_t, int), resize(int, NoChange_t).
|
|
*
|
|
* If the current number of coefficients of \c *this exactly matches the
|
|
* product \a rows * \a cols, then no memory allocation is performed and
|
|
* the current values are left unchanged. In all other cases, including
|
|
* shrinking, the data is reallocated and all previous values are lost.
|
|
*
|
|
* Example: \include Matrix_resize_int_int.cpp
|
|
* Output: \verbinclude Matrix_resize_int_int.out
|
|
*
|
|
* \sa resize(int) for vectors, resize(NoChange_t, int), resize(int, NoChange_t)
|
|
*/
|
|
inline void resize(int rows, int cols)
|
|
{
|
|
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
|
|
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
|
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
|
|
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
|
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
|
int size = rows*cols;
|
|
bool size_changed = size != this->size();
|
|
m_storage.resize(size, rows, cols);
|
|
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
#else
|
|
m_storage.resize(rows*cols, rows, cols);
|
|
#endif
|
|
}
|
|
|
|
/** Resizes \c *this to a vector of length \a size
|
|
*
|
|
* \only_for_vectors. This method does not work for
|
|
* partially dynamic matrices when the static dimension is anything other
|
|
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
|
|
*
|
|
* Example: \include Matrix_resize_int.cpp
|
|
* Output: \verbinclude Matrix_resize_int.out
|
|
*
|
|
* \sa resize(int,int), resize(NoChange_t, int), resize(int, NoChange_t)
|
|
*/
|
|
inline void resize(int size)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(DenseStorageBase)
|
|
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
|
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
|
bool size_changed = size != this->size();
|
|
#endif
|
|
if(RowsAtCompileTime == 1)
|
|
m_storage.resize(size, 1, size);
|
|
else
|
|
m_storage.resize(size, size, 1);
|
|
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
|
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
#endif
|
|
}
|
|
|
|
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
|
|
* as in the example below.
|
|
*
|
|
* Example: \include Matrix_resize_NoChange_int.cpp
|
|
* Output: \verbinclude Matrix_resize_NoChange_int.out
|
|
*
|
|
* \sa resize(int,int)
|
|
*/
|
|
inline void resize(NoChange_t, int cols)
|
|
{
|
|
resize(rows(), cols);
|
|
}
|
|
|
|
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
|
|
* as in the example below.
|
|
*
|
|
* Example: \include Matrix_resize_int_NoChange.cpp
|
|
* Output: \verbinclude Matrix_resize_int_NoChange.out
|
|
*
|
|
* \sa resize(int,int)
|
|
*/
|
|
inline void resize(int rows, NoChange_t)
|
|
{
|
|
resize(rows, cols());
|
|
}
|
|
|
|
/** Resizes \c *this to have the same dimensions as \a other.
|
|
* Takes care of doing all the checking that's needed.
|
|
*
|
|
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
|
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
|
* remain row-vectors and vectors remain vectors.
|
|
*/
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE void resizeLike(const DenseBase<OtherDerived>& other)
|
|
{
|
|
if(RowsAtCompileTime == 1)
|
|
{
|
|
ei_assert(other.rows() == 1 || other.cols() == 1);
|
|
resize(1, other.size());
|
|
}
|
|
else if(ColsAtCompileTime == 1)
|
|
{
|
|
ei_assert(other.rows() == 1 || other.cols() == 1);
|
|
resize(other.size(), 1);
|
|
}
|
|
else resize(other.rows(), other.cols());
|
|
}
|
|
|
|
/** Resizes \c *this to a \a rows x \a cols matrix while leaving old values of \c *this untouched.
|
|
*
|
|
* This method is intended for dynamic-size matrices. If you only want to change the number
|
|
* of rows and/or of columns, you can use conservativeResize(NoChange_t, int),
|
|
* conservativeResize(int, NoChange_t).
|
|
*
|
|
* The top-left part of the resized matrix will be the same as the overlapping top-left corner
|
|
* of \c *this. In case values need to be appended to the matrix they will be uninitialized.
|
|
*/
|
|
EIGEN_STRONG_INLINE void conservativeResize(int rows, int cols)
|
|
{
|
|
ei_conservative_resize_like_impl<Derived>::run(*this, rows, cols);
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t)
|
|
{
|
|
// Note: see the comment in conservativeResize(int,int)
|
|
conservativeResize(rows, cols());
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols)
|
|
{
|
|
// Note: see the comment in conservativeResize(int,int)
|
|
conservativeResize(rows(), cols);
|
|
}
|
|
|
|
/** Resizes \c *this to a vector of length \a size while retaining old values of *this.
|
|
*
|
|
* \only_for_vectors. This method does not work for
|
|
* partially dynamic matrices when the static dimension is anything other
|
|
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
|
|
*
|
|
* When values are appended, they will be uninitialized.
|
|
*/
|
|
EIGEN_STRONG_INLINE void conservativeResize(int size)
|
|
{
|
|
ei_conservative_resize_like_impl<Derived>::run(*this, size);
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
|
|
{
|
|
ei_conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
|
|
}
|
|
|
|
/** This is a special case of the templated operator=. Its purpose is to
|
|
* prevent a default operator= from hiding the templated operator=.
|
|
*/
|
|
EIGEN_STRONG_INLINE Derived& operator=(const DenseStorageBase& other)
|
|
{
|
|
return _set(other);
|
|
}
|
|
|
|
/** \sa MatrixBase::lazyAssign() */
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
|
|
{
|
|
_resize_to_match(other);
|
|
return Base::lazyAssign(other.derived());
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
|
|
{
|
|
resize(func.rows(), func.cols());
|
|
return Base::operator=(func);
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE explicit DenseStorageBase() : m_storage()
|
|
{
|
|
// _check_template_params();
|
|
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
// FIXME is it still needed ?
|
|
/** \internal */
|
|
DenseStorageBase(ei_constructor_without_unaligned_array_assert)
|
|
: m_storage(ei_constructor_without_unaligned_array_assert())
|
|
{
|
|
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
}
|
|
#endif
|
|
|
|
EIGEN_STRONG_INLINE DenseStorageBase(int size, int rows, int cols)
|
|
: m_storage(size, rows, cols)
|
|
{
|
|
// _check_template_params();
|
|
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
}
|
|
|
|
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
|
|
*/
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
|
|
{
|
|
resize(other.derived().rows(), other.derived().cols());
|
|
Base::operator=(other.derived());
|
|
return this->derived();
|
|
}
|
|
|
|
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE DenseStorageBase(const EigenBase<OtherDerived> &other)
|
|
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
|
{
|
|
_check_template_params();
|
|
Base::operator=(other.derived());
|
|
}
|
|
|
|
/** \name Map
|
|
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
|
|
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
|
|
* \a data pointers.
|
|
*
|
|
* These methods do not allow to specify strides. If you need to specify strides, you have to
|
|
* use the Map class directly.
|
|
*
|
|
* \see class Map
|
|
*/
|
|
//@{
|
|
inline static const UnalignedMapType Map(const Scalar* data)
|
|
{ return UnalignedMapType(data); }
|
|
inline static UnalignedMapType Map(Scalar* data)
|
|
{ return UnalignedMapType(data); }
|
|
inline static const UnalignedMapType Map(const Scalar* data, int size)
|
|
{ return UnalignedMapType(data, size); }
|
|
inline static UnalignedMapType Map(Scalar* data, int size)
|
|
{ return UnalignedMapType(data, size); }
|
|
inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
|
|
{ return UnalignedMapType(data, rows, cols); }
|
|
inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
|
|
{ return UnalignedMapType(data, rows, cols); }
|
|
|
|
inline static const AlignedMapType MapAligned(const Scalar* data)
|
|
{ return AlignedMapType(data); }
|
|
inline static AlignedMapType MapAligned(Scalar* data)
|
|
{ return AlignedMapType(data); }
|
|
inline static const AlignedMapType MapAligned(const Scalar* data, int size)
|
|
{ return AlignedMapType(data, size); }
|
|
inline static AlignedMapType MapAligned(Scalar* data, int size)
|
|
{ return AlignedMapType(data, size); }
|
|
inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
|
|
{ return AlignedMapType(data, rows, cols); }
|
|
inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
|
|
{ return AlignedMapType(data, rows, cols); }
|
|
//@}
|
|
|
|
using Base::setConstant;
|
|
Derived& setConstant(int size, const Scalar& value);
|
|
Derived& setConstant(int rows, int cols, const Scalar& value);
|
|
|
|
using Base::setZero;
|
|
Derived& setZero(int size);
|
|
Derived& setZero(int rows, int cols);
|
|
|
|
using Base::setOnes;
|
|
Derived& setOnes(int size);
|
|
Derived& setOnes(int rows, int cols);
|
|
|
|
using Base::setRandom;
|
|
Derived& setRandom(int size);
|
|
Derived& setRandom(int rows, int cols);
|
|
|
|
#ifdef EIGEN_DENSESTORAGEBASE_PLUGIN
|
|
#include EIGEN_DENSESTORAGEBASE_PLUGIN
|
|
#endif
|
|
|
|
protected:
|
|
/** \internal Resizes *this in preparation for assigning \a other to it.
|
|
* Takes care of doing all the checking that's needed.
|
|
*
|
|
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
|
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
|
* remain row-vectors and vectors remain vectors.
|
|
*/
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE void _resize_to_match(const DenseBase<OtherDerived>& other)
|
|
{
|
|
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
|
|
ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
|
|
: (rows() == other.rows() && cols() == other.cols())))
|
|
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
|
|
#endif
|
|
resizeLike(other);
|
|
}
|
|
|
|
/**
|
|
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
|
|
*
|
|
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
|
* it will be initialized.
|
|
*
|
|
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
|
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
|
* remain row-vectors and vectors remain vectors.
|
|
*
|
|
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
|
|
*
|
|
* \internal
|
|
*/
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
|
|
{
|
|
_set_selector(other.derived(), typename ei_meta_if<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
|
|
return this->derived();
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
|
|
|
|
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
|
|
* is the case when creating a new matrix) so one can enforce lazy evaluation.
|
|
*
|
|
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
|
|
*/
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
|
|
{
|
|
_resize_to_match(other);
|
|
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
|
|
// it wouldn't allow to copy a row-vector into a column-vector.
|
|
return ei_assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE void _check_template_params()
|
|
{
|
|
EIGEN_STATIC_ASSERT(((RowsAtCompileTime >= MaxRowsAtCompileTime)
|
|
&& (ColsAtCompileTime >= MaxColsAtCompileTime)
|
|
&& (MaxRowsAtCompileTime >= 0)
|
|
&& (MaxColsAtCompileTime >= 0)
|
|
&& (RowsAtCompileTime <= Dynamic)
|
|
&& (ColsAtCompileTime <= Dynamic)
|
|
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
|
|
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
|
|
&& ((MaxRowsAtCompileTime==Dynamic?1:MaxRowsAtCompileTime)*(MaxColsAtCompileTime==Dynamic?1:MaxColsAtCompileTime)<Dynamic)
|
|
&& (_Options & (DontAlign|RowMajor)) == _Options),
|
|
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
|
}
|
|
|
|
|
|
template<typename T0, typename T1>
|
|
EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
|
|
{
|
|
ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
|
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
|
m_storage.resize(rows*cols,rows,cols);
|
|
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
|
}
|
|
template<typename T0, typename T1>
|
|
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(DenseStorageBase, 2)
|
|
m_storage.data()[0] = x;
|
|
m_storage.data()[1] = y;
|
|
}
|
|
|
|
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
|
|
friend struct ei_matrix_swap_impl;
|
|
|
|
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
|
|
* data pointers.
|
|
*/
|
|
template<typename OtherDerived>
|
|
void _swap(DenseBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
|
|
{
|
|
enum { SwapPointers = ei_is_same_type<Derived, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
|
|
ei_matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template <typename Derived, typename OtherDerived, bool IsVector>
|
|
struct ei_conservative_resize_like_impl
|
|
{
|
|
static void run(DenseBase<Derived>& _this, int rows, int cols)
|
|
{
|
|
if (_this.rows() == rows && _this.cols() == cols) return;
|
|
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
|
|
|
|
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
|
|
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
|
|
{
|
|
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
|
|
}
|
|
else
|
|
{
|
|
// The storage order does not allow us to use reallocation.
|
|
typename Derived::PlainObject tmp(rows,cols);
|
|
const int common_rows = std::min(rows, _this.rows());
|
|
const int common_cols = std::min(cols, _this.cols());
|
|
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
|
|
_this.derived().swap(tmp);
|
|
}
|
|
}
|
|
|
|
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
|
|
{
|
|
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
|
|
|
|
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
|
|
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
|
|
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
|
|
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
|
|
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
|
|
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
|
|
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
|
|
|
|
if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
|
|
(!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
|
|
{
|
|
const int new_rows = other.rows() - _this.rows();
|
|
const int new_cols = other.cols() - _this.cols();
|
|
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
|
|
if (new_rows>0)
|
|
_this.corner(BottomRight, new_rows, other.cols()) = other.corner(BottomRight, new_rows, other.cols());
|
|
else if (new_cols>0)
|
|
_this.corner(BottomRight, other.rows(), new_cols) = other.corner(BottomRight, other.rows(), new_cols);
|
|
}
|
|
else
|
|
{
|
|
// The storage order does not allow us to use reallocation.
|
|
typename Derived::PlainObject tmp(other);
|
|
const int common_rows = std::min(tmp.rows(), _this.rows());
|
|
const int common_cols = std::min(tmp.cols(), _this.cols());
|
|
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
|
|
_this.derived().swap(tmp);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Derived, typename OtherDerived>
|
|
struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
|
|
{
|
|
static void run(DenseBase<Derived>& _this, int size)
|
|
{
|
|
const int new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
|
|
const int new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
|
|
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
|
|
}
|
|
|
|
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
|
|
{
|
|
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
|
|
|
|
const int num_new_elements = other.size() - _this.size();
|
|
|
|
const int new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
|
|
const int new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
|
|
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
|
|
|
|
if (num_new_elements > 0)
|
|
_this.tail(num_new_elements) = other.tail(num_new_elements);
|
|
}
|
|
};
|
|
|
|
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
|
|
struct ei_matrix_swap_impl
|
|
{
|
|
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
|
|
{
|
|
a.base().swap(b);
|
|
}
|
|
};
|
|
|
|
template<typename MatrixTypeA, typename MatrixTypeB>
|
|
struct ei_matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
|
|
{
|
|
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
|
|
{
|
|
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_DENSESTORAGEBASE_H
|