eigen/Eigen/src/Core/DenseStorageBase.h
Gael Guennebaud 2f3d685e0c a matrix (or array) does not always have the LinearAccessBit!
=> fixes in outerStride and matrix flags
2010-03-02 15:31:39 +01:00

636 lines
25 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
template <typename Derived, typename OtherDerived = Derived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct ei_conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct ei_matrix_swap_impl;
/**
* \brief Dense storage base class for matrices and arrays.
**/
template<typename Derived, template<typename> class _Base, int _Options>
class DenseStorageBase : public _Base<Derived>
{
public:
enum { Options = _Options };
typedef _Base<Derived> Base;
typedef typename Base::PlainObject PlainObject;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
friend class Eigen::Map<Derived, Unaligned>;
typedef class Eigen::Map<Derived, Unaligned> UnalignedMapType;
friend class Eigen::Map<Derived, Aligned>;
typedef class Eigen::Map<Derived, Aligned> AlignedMapType;
protected:
ei_matrix_storage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Base& base() { return *static_cast<Base*>(this); }
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
inline int innerStride() const { return 1; }
inline int outerStride() const
{
static const int MaxInnerSize = Base::IsRowMajor ? MaxColsAtCompileTime : MaxRowsAtCompileTime;
return (!IsVectorAtCompileTime) && MaxInnerSize!=Dynamic ? MaxInnerSize : this->innerSize();
}
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, int), resize(int, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(int) for vectors, resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int rows, int cols)
{
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
int size = rows*cols;
bool size_changed = size != this->size();
m_storage.resize(size, rows, cols);
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#else
m_storage.resize(rows*cols, rows, cols);
#endif
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(int,int), resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(DenseStorageBase)
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
bool size_changed = size != this->size();
#endif
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(int,int)
*/
inline void resize(NoChange_t, int cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(int,int)
*/
inline void resize(int rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes \c *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const DenseBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.rows() == 1 || other.cols() == 1);
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.rows() == 1 || other.cols() == 1);
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes \c *this to a \a rows x \a cols matrix while leaving old values of \c *this untouched.
*
* This method is intended for dynamic-size matrices. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, int),
* conservativeResize(int, NoChange_t).
*
* The top-left part of the resized matrix will be the same as the overlapping top-left corner
* of \c *this. In case values need to be appended to the matrix they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int rows, int cols)
{
ei_conservative_resize_like_impl<Derived>::run(*this, rows, cols);
}
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows, cols());
}
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows(), cols);
}
/** Resizes \c *this to a vector of length \a size while retaining old values of *this.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int size)
{
ei_conservative_resize_like_impl<Derived>::run(*this, size);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
ei_conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Derived& operator=(const DenseStorageBase& other)
{
return _set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
EIGEN_STRONG_INLINE explicit DenseStorageBase() : m_storage()
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
DenseStorageBase(ei_constructor_without_unaligned_array_assert)
: m_storage(ei_constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_STRONG_INLINE DenseStorageBase(int size, int rows, int cols)
: m_storage(size, rows, cols)
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
{
resize(other.derived().rows(), other.derived().cols());
Base::operator=(other.derived());
return this->derived();
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE DenseStorageBase(const EigenBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
_check_template_params();
Base::operator=(other.derived());
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* These methods do not allow to specify strides. If you need to specify strides, you have to
* use the Map class directly.
*
* \see class Map
*/
//@{
inline static const UnalignedMapType Map(const Scalar* data)
{ return UnalignedMapType(data); }
inline static UnalignedMapType Map(Scalar* data)
{ return UnalignedMapType(data); }
inline static const UnalignedMapType Map(const Scalar* data, int size)
{ return UnalignedMapType(data, size); }
inline static UnalignedMapType Map(Scalar* data, int size)
{ return UnalignedMapType(data, size); }
inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
{ return UnalignedMapType(data, rows, cols); }
inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
{ return UnalignedMapType(data, rows, cols); }
inline static const AlignedMapType MapAligned(const Scalar* data)
{ return AlignedMapType(data); }
inline static AlignedMapType MapAligned(Scalar* data)
{ return AlignedMapType(data); }
inline static const AlignedMapType MapAligned(const Scalar* data, int size)
{ return AlignedMapType(data, size); }
inline static AlignedMapType MapAligned(Scalar* data, int size)
{ return AlignedMapType(data, size); }
inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
{ return AlignedMapType(data, rows, cols); }
inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
{ return AlignedMapType(data, rows, cols); }
//@}
using Base::setConstant;
Derived& setConstant(int size, const Scalar& value);
Derived& setConstant(int rows, int cols, const Scalar& value);
using Base::setZero;
Derived& setZero(int size);
Derived& setZero(int rows, int cols);
using Base::setOnes;
Derived& setOnes(int size);
Derived& setOnes(int rows, int cols);
using Base::setRandom;
Derived& setRandom(int size);
Derived& setRandom(int rows, int cols);
#ifdef EIGEN_DENSESTORAGEBASE_PLUGIN
#include EIGEN_DENSESTORAGEBASE_PLUGIN
#endif
protected:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const DenseBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#endif
resizeLike(other);
}
/**
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*
* \internal
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename ei_meta_if<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
return this->derived();
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return ei_assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
}
EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT(((RowsAtCompileTime >= MaxRowsAtCompileTime)
&& (ColsAtCompileTime >= MaxColsAtCompileTime)
&& (MaxRowsAtCompileTime >= 0)
&& (MaxColsAtCompileTime >= 0)
&& (RowsAtCompileTime <= Dynamic)
&& (ColsAtCompileTime <= Dynamic)
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
&& ((MaxRowsAtCompileTime==Dynamic?1:MaxRowsAtCompileTime)*(MaxColsAtCompileTime==Dynamic?1:MaxColsAtCompileTime)<Dynamic)
&& (_Options & (DontAlign|RowMajor)) == _Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(DenseStorageBase, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct ei_matrix_swap_impl;
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void _swap(DenseBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
{
enum { SwapPointers = ei_is_same_type<Derived, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
ei_matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
}
};
template <typename Derived, typename OtherDerived, bool IsVector>
struct ei_conservative_resize_like_impl
{
static void run(DenseBase<Derived>& _this, int rows, int cols)
{
if (_this.rows() == rows && _this.cols() == cols) return;
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
{
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(rows,cols);
const int common_rows = std::min(rows, _this.rows());
const int common_cols = std::min(cols, _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
{
const int new_rows = other.rows() - _this.rows();
const int new_cols = other.cols() - _this.cols();
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
if (new_rows>0)
_this.corner(BottomRight, new_rows, other.cols()) = other.corner(BottomRight, new_rows, other.cols());
else if (new_cols>0)
_this.corner(BottomRight, other.rows(), new_cols) = other.corner(BottomRight, other.rows(), new_cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(other);
const int common_rows = std::min(tmp.rows(), _this.rows());
const int common_cols = std::min(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
};
template <typename Derived, typename OtherDerived>
struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
{
static void run(DenseBase<Derived>& _this, int size)
{
const int new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
const int new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
const int num_new_elements = other.size() - _this.size();
const int new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
const int new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
if (num_new_elements > 0)
_this.tail(num_new_elements) = other.tail(num_new_elements);
}
};
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct ei_matrix_swap_impl
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
}
};
template<typename MatrixTypeA, typename MatrixTypeB>
struct ei_matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
}
};
#endif // EIGEN_DENSESTORAGEBASE_H