mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-30 16:52:01 +08:00

This allows us to do faster native scalar operations. Also updated half/quarter packets to use the native type if available. Benchmark improvement: ``` Comparing ./2910_without_float16 to ./2910_with_float16 Benchmark Time CPU Time Old Time New CPU Old CPU New ------------------------------------------------------------------------------------------------------------------------------------ BM_CalcMat<float>/10000/768/500 -0.0041 -0.0040 58276392 58039442 58273420 58039582 BM_CalcMat<_Float16>/10000/768/500 +0.0073 +0.0073 642506339 647214446 642481384 647188303 BM_CalcMat<Eigen::half>/10000/768/500 -0.3170 -0.3170 92511115 63182101 92506771 63179258 BM_CalcVec<float>/10000/768/500 +0.0022 +0.0022 5198157 5209469 5197913 5209334 BM_CalcVec<_Float16>/10000/768/500 +0.0025 +0.0026 10133324 10159111 10132641 10158507 BM_CalcVec<Eigen::half>/10000/768/500 -0.7760 -0.7760 45337937 10156952 45336532 10156389 OVERALL_GEOMEAN -0.2677 -0.2677 0 0 0 0 ``` Fixes #2910.
130 lines
4.6 KiB
C++
130 lines
4.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
|
|
#define EIGEN_MATH_FUNCTIONS_AVX_H
|
|
|
|
/* The sin and cos functions of this file are loosely derived from
|
|
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
|
*/
|
|
|
|
// IWYU pragma: private
|
|
#include "../../InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet8f)
|
|
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(atanh, Packet4d)
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(log, Packet4d)
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(log2, Packet4d)
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(exp, Packet4d)
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(tanh, Packet4d)
|
|
#ifdef EIGEN_VECTORIZE_AVX2
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(sin, Packet4d)
|
|
EIGEN_DOUBLE_PACKET_FUNCTION(cos, Packet4d)
|
|
#endif
|
|
EIGEN_GENERIC_PACKET_FUNCTION(atan, Packet4d)
|
|
EIGEN_GENERIC_PACKET_FUNCTION(exp2, Packet4d)
|
|
|
|
// Notice that for newer processors, it is counterproductive to use Newton
|
|
// iteration for square root. In particular, Skylake and Zen2 processors
|
|
// have approximately doubled throughput of the _mm_sqrt_ps instruction
|
|
// compared to their predecessors.
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f psqrt<Packet8f>(const Packet8f& _x) {
|
|
return _mm256_sqrt_ps(_x);
|
|
}
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4d psqrt<Packet4d>(const Packet4d& _x) {
|
|
return _mm256_sqrt_pd(_x);
|
|
}
|
|
|
|
// Even on Skylake, using Newton iteration is a win for reciprocal square root.
|
|
#if EIGEN_FAST_MATH
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f prsqrt<Packet8f>(const Packet8f& a) {
|
|
// _mm256_rsqrt_ps returns -inf for negative denormals.
|
|
// _mm512_rsqrt**_ps returns -NaN for negative denormals. We may want
|
|
// consistency here.
|
|
// const Packet8f rsqrt = pselect(pcmp_lt(a, pzero(a)),
|
|
// pset1<Packet8f>(-NumTraits<float>::quiet_NaN()),
|
|
// _mm256_rsqrt_ps(a));
|
|
return generic_rsqrt_newton_step<Packet8f, /*Steps=*/1>::run(a, _mm256_rsqrt_ps(a));
|
|
}
|
|
|
|
template <>
|
|
EIGEN_STRONG_INLINE Packet8f preciprocal<Packet8f>(const Packet8f& a) {
|
|
return generic_reciprocal_newton_step<Packet8f, /*Steps=*/1>::run(a, _mm256_rcp_ps(a));
|
|
}
|
|
|
|
#endif
|
|
|
|
template <>
|
|
EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) {
|
|
Packet8f fexponent;
|
|
const Packet8h out = float2half(pfrexp<Packet8f>(half2float(a), fexponent));
|
|
exponent = float2half(fexponent);
|
|
return out;
|
|
}
|
|
|
|
template <>
|
|
EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) {
|
|
return float2half(pldexp<Packet8f>(half2float(a), half2float(exponent)));
|
|
}
|
|
|
|
template <>
|
|
EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) {
|
|
Packet8f fexponent;
|
|
const Packet8bf out = F32ToBf16(pfrexp<Packet8f>(Bf16ToF32(a), fexponent));
|
|
exponent = F32ToBf16(fexponent);
|
|
return out;
|
|
}
|
|
|
|
template <>
|
|
EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) {
|
|
return F32ToBf16(pldexp<Packet8f>(Bf16ToF32(a), Bf16ToF32(exponent)));
|
|
}
|
|
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp2)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, preciprocal)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
|
|
|
|
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp2)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, preciprocal)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
|
|
#endif
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MATH_FUNCTIONS_AVX_H
|