mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-28 23:04:18 +08:00

Adds copy constructors to Tensor ops, inherits assignment operators from `TensorBase`. Addresses #1863
217 lines
7.7 KiB
C++
217 lines
7.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorLayoutSwap
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Swap the layout from col-major to row-major, or row-major
|
|
* to col-major, and invert the order of the dimensions.
|
|
*
|
|
* Beware: the dimensions are reversed by this operation. If you want to
|
|
* preserve the ordering of the dimensions, you need to combine this
|
|
* operation with a shuffle.
|
|
*
|
|
* \example:
|
|
* Tensor<float, 2, ColMajor> input(2, 4);
|
|
* Tensor<float, 2, RowMajor> output = input.swap_layout();
|
|
* eigen_assert(output.dimension(0) == 4);
|
|
* eigen_assert(output.dimension(1) == 2);
|
|
*
|
|
* array<int, 2> shuffle(1, 0);
|
|
* output = input.swap_layout().shuffle(shuffle);
|
|
* eigen_assert(output.dimension(0) == 2);
|
|
* eigen_assert(output.dimension(1) == 4);
|
|
*
|
|
*/
|
|
namespace internal {
|
|
template<typename XprType>
|
|
struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType>
|
|
{
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef traits<XprType> XprTraits;
|
|
typedef typename XprTraits::StorageKind StorageKind;
|
|
typedef typename XprTraits::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
typedef typename remove_reference<Nested>::type _Nested;
|
|
static const int NumDimensions = traits<XprType>::NumDimensions;
|
|
static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor;
|
|
typedef typename XprTraits::PointerType PointerType;
|
|
};
|
|
|
|
template<typename XprType>
|
|
struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense>
|
|
{
|
|
typedef const TensorLayoutSwapOp<XprType>& type;
|
|
};
|
|
|
|
template<typename XprType>
|
|
struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type>
|
|
{
|
|
typedef TensorLayoutSwapOp<XprType> type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
|
|
template<typename XprType>
|
|
class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors>
|
|
{
|
|
public:
|
|
typedef TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> Base;
|
|
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
|
typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr)
|
|
: m_xpr(expr) {}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
|
expression() const { return m_xpr; }
|
|
|
|
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorLayoutSwapOp)
|
|
protected:
|
|
typename XprType::Nested m_xpr;
|
|
};
|
|
|
|
|
|
// Eval as rvalue
|
|
template<typename ArgType, typename Device>
|
|
struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
|
|
{
|
|
typedef TensorLayoutSwapOp<ArgType> XprType;
|
|
typedef typename XprType::Index Index;
|
|
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
|
typedef DSizes<Index, NumDims> Dimensions;
|
|
|
|
enum {
|
|
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
BlockAccess = false,
|
|
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
|
|
Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
|
|
CoordAccess = false, // to be implemented
|
|
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
|
|
};
|
|
|
|
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
|
|
typedef internal::TensorBlockNotImplemented TensorBlock;
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: m_impl(op.expression(), device)
|
|
{
|
|
for(int i = 0; i < NumDims; ++i) {
|
|
m_dimensions[i] = m_impl.dimensions()[NumDims-1-i];
|
|
}
|
|
}
|
|
|
|
#ifdef EIGEN_USE_SYCL
|
|
// binding placeholder accessors to a command group handler for SYCL
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
|
|
m_impl.bind(cgh);
|
|
}
|
|
#endif
|
|
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
|
typedef StorageMemory<CoeffReturnType, Device> Storage;
|
|
typedef typename Storage::Type EvaluatorPointerType;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
|
|
return m_impl.evalSubExprsIfNeeded(data);
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
return m_impl.coeff(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
return m_impl.template packet<LoadMode>(index);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
|
|
return m_impl.costPerCoeff(vectorized);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC typename Storage::Type data() const {
|
|
return constCast(m_impl.data());
|
|
}
|
|
|
|
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
|
|
|
protected:
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
Dimensions m_dimensions;
|
|
};
|
|
|
|
|
|
// Eval as lvalue
|
|
template<typename ArgType, typename Device>
|
|
struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device>
|
|
: public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
|
|
{
|
|
typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base;
|
|
typedef TensorLayoutSwapOp<ArgType> XprType;
|
|
|
|
enum {
|
|
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
BlockAccess = false,
|
|
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
|
|
Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
|
|
CoordAccess = false // to be implemented
|
|
};
|
|
|
|
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
|
|
typedef internal::TensorBlockNotImplemented TensorBlock;
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: Base(op, device)
|
|
{ }
|
|
|
|
typedef typename XprType::Index Index;
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
|
|
{
|
|
return this->m_impl.coeffRef(index);
|
|
}
|
|
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
void writePacket(Index index, const PacketReturnType& x)
|
|
{
|
|
this->m_impl.template writePacket<StoreMode>(index, x);
|
|
}
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
|