mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 08:14:10 +08:00

* The scheduling of computation is moved out the the assignment code and into a new TensorExecutor class * The assignment itself is now a regular node on the expression tree * The expression evaluators start by recursively evaluating all their subexpressions if needed
92 lines
3.0 KiB
C++
92 lines
3.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorDevice
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Pseudo expression providing an operator = that will evaluate its argument
|
|
* on the specified computing 'device' (GPU, thread pool, ...)
|
|
*
|
|
* Example:
|
|
* C.device(EIGEN_GPU) = A + B;
|
|
*
|
|
* Todo: thread pools.
|
|
* Todo: operator +=, -=, *= and so on.
|
|
*/
|
|
|
|
template <typename ExpressionType, typename DeviceType> class TensorDevice {
|
|
public:
|
|
TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) {
|
|
typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign;
|
|
Assign assign(m_expression, other);
|
|
static const bool Vectorize = TensorEvaluator<const Assign, DeviceType>::PacketAccess;
|
|
internal::TensorExecutor<const Assign, DeviceType, Vectorize>::run(assign, m_device);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
const DeviceType& m_device;
|
|
ExpressionType& m_expression;
|
|
};
|
|
|
|
|
|
#ifdef EIGEN_USE_THREADS
|
|
template <typename ExpressionType> class TensorDevice<ExpressionType, ThreadPoolDevice> {
|
|
public:
|
|
TensorDevice(const ThreadPoolDevice& device, ExpressionType& expression) : m_device(device), m_expression(expression) {}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) {
|
|
typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign;
|
|
Assign assign(m_expression, other);
|
|
static const bool Vectorize = TensorEvaluator<const Assign, ThreadPoolDevice>::PacketAccess;
|
|
internal::TensorExecutor<const Assign, ThreadPoolDevice, Vectorize>::run(assign, m_device);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
const ThreadPoolDevice& m_device;
|
|
ExpressionType& m_expression;
|
|
};
|
|
#endif
|
|
|
|
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
template <typename ExpressionType> class TensorDevice<ExpressionType, GpuDevice>
|
|
{
|
|
public:
|
|
TensorDevice(const GpuDevice& device, ExpressionType& expression) : m_device(device), m_expression(expression) {}
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) {
|
|
typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign;
|
|
Assign assign(m_expression, other);
|
|
internal::TensorExecutor<const Assign, GpuDevice, false>::run(assign, m_device);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
const GpuDevice& m_device;
|
|
ExpressionType m_expression;
|
|
};
|
|
#endif
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
|