Antonio Sanchez 38abf2be42 Fix Half NaN definition and test.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`.  Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.

Also modified the `bfloat16_float` test to match.

Tested with `cortex-a53` and `cortex-a55`.
2020-11-23 14:13:59 -08:00

827 lines
29 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
// The original license follows:
//
// Copyright (c) Fabian Giesen, 2016
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Standard 16-bit float type, mostly useful for GPUs. Defines a new
// type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with
// operator overloads such that it behaves basically as an arithmetic
// type. It will be quite slow on CPUs (so it is recommended to stay
// in fp32 for CPUs, except for simple parameter conversions, I/O
// to disk and the likes), but fast on GPUs.
#ifndef EIGEN_HALF_H
#define EIGEN_HALF_H
#if EIGEN_HAS_CXX11
#define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type()
#else
#define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type()
#endif
#include <sstream>
#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
// When compiling with GPU support, the "__half_raw" base class as well as
// some other routines are defined in the GPU compiler header files
// (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr
// As a consequence, we get compile failures when compiling Eigen with
// GPU support. Hence the need to disable EIGEN_CONSTEXPR when building
// Eigen with GPU support
#pragma push_macro("EIGEN_CONSTEXPR")
#undef EIGEN_CONSTEXPR
#define EIGEN_CONSTEXPR
#endif
namespace Eigen {
struct half;
namespace half_impl {
#if !defined(EIGEN_HAS_GPU_FP16)
// Make our own __half_raw definition that is similar to CUDA's.
struct __half_raw {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw() : x(0) {}
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) {
}
__fp16 x;
#else
explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(raw) {}
numext::uint16_t x;
#endif
};
#elif defined(EIGEN_HAS_HIP_FP16)
// Nothing to do here
// HIP fp16 header file has a definition for __half_raw
#elif defined(EIGEN_HAS_CUDA_FP16)
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
typedef __half __half_raw;
#endif // defined(EIGEN_HAS_CUDA_FP16)
#elif defined(SYCL_DEVICE_ONLY)
typedef cl::sycl::half __half_raw;
#endif
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);
struct half_base : public __half_raw {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base() {}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {}
#if defined(EIGEN_HAS_GPU_FP16)
#if defined(EIGEN_HAS_HIP_FP16)
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); }
#elif defined(EIGEN_HAS_CUDA_FP16)
#if (defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000)
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
#endif
#endif
#endif
};
} // namespace half_impl
// Class definition.
struct half : public half_impl::half_base {
// Writing this out as separate #if-else blocks to make the code easier to follow
// The same applies to most #if-else blocks in this file
#if !defined(EIGEN_HAS_GPU_FP16)
typedef half_impl::__half_raw __half_raw;
#elif defined(EIGEN_HAS_HIP_FP16)
// Nothing to do here
// HIP fp16 header file has a definition for __half_raw
#elif defined(EIGEN_HAS_CUDA_FP16)
// Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so
// (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within
// #if defined(EIGEN_HAS_CUDA_FP16) is needed
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
typedef half_impl::__half_raw __half_raw;
#endif
#endif
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half() {}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {}
#if defined(EIGEN_HAS_GPU_FP16)
#if defined(EIGEN_HAS_HIP_FP16)
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
#elif defined(EIGEN_HAS_CUDA_FP16)
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
#endif
#endif
#endif
explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(bool b)
: half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
template<class T>
explicit EIGEN_DEVICE_FUNC half(const T& val)
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {}
explicit EIGEN_DEVICE_FUNC half(float f)
: half_impl::half_base(half_impl::float_to_half_rtne(f)) {}
// Following the convention of numpy, converting between complex and
// float will lead to loss of imag value.
template<typename RealScalar>
explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c)
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {}
EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless.
return half_impl::half_to_float(*this);
}
};
} // end namespace Eigen
namespace std {
template<>
struct numeric_limits<Eigen::half> {
static const bool is_specialized = true;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_present;
static const bool has_denorm_loss = false;
static const std::float_round_style round_style = std::round_to_nearest;
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const int digits = 11;
static const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
static const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
static const int radix = 2;
static const int min_exponent = -13;
static const int min_exponent10 = -4;
static const int max_exponent = 16;
static const int max_exponent10 = 4;
static const bool traps = true;
static const bool tinyness_before = false;
static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); }
static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); }
static Eigen::half round_error() { return Eigen::half(0.5); }
static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); }
static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); }
};
// If std::numeric_limits<T> is specialized, should also specialize
// std::numeric_limits<const T>, std::numeric_limits<volatile T>, and
// std::numeric_limits<const volatile T>
// https://stackoverflow.com/a/16519653/
template<>
struct numeric_limits<const Eigen::half> : numeric_limits<Eigen::half> {};
template<>
struct numeric_limits<volatile Eigen::half> : numeric_limits<Eigen::half> {};
template<>
struct numeric_limits<const volatile Eigen::half> : numeric_limits<Eigen::half> {};
} // end namespace std
namespace Eigen {
namespace half_impl {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
EIGEN_CUDA_ARCH >= 530) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE))
// Note: We deliberatly do *not* define this to 1 even if we have Arm's native
// fp16 type since GPU halfs are rather different from native CPU halfs.
// TODO: Rename to something like EIGEN_HAS_NATIVE_GPU_FP16
#define EIGEN_HAS_NATIVE_FP16
#endif
// Intrinsics for native fp16 support. Note that on current hardware,
// these are no faster than fp32 arithmetic (you need to use the half2
// versions to get the ALU speed increased), but you do save the
// conversion steps back and forth.
#if defined(EIGEN_HAS_NATIVE_FP16)
EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) {
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
return __hadd(::__half(a), ::__half(b));
#else
return __hadd(a, b);
#endif
}
EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) {
return __hmul(a, b);
}
EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) {
return __hsub(a, b);
}
EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) {
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
return __hdiv(a, b);
#else
float num = __half2float(a);
float denom = __half2float(b);
return __float2half(num / denom);
#endif
}
EIGEN_STRONG_INLINE __device__ half operator - (const half& a) {
return __hneg(a);
}
EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) {
a = a + b;
return a;
}
EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) {
a = a * b;
return a;
}
EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) {
a = a - b;
return a;
}
EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) {
a = a / b;
return a;
}
EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) {
return __heq(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) {
return __hne(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) {
return __hlt(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) {
return __hle(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) {
return __hgt(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) {
return __hge(a, b);
}
#endif
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
return half(vaddh_f16(a.x, b.x));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
return half(vmulh_f16(a.x, b.x));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
return half(vsubh_f16(a.x, b.x));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
return half(vdivh_f16(a.x, b.x));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) {
return half(vnegh_f16(a.x));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
a = half(vaddh_f16(a.x, b.x));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
a = half(vmulh_f16(a.x, b.x));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
a = half(vsubh_f16(a.x, b.x));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
a = half(vdivh_f16(a.x, b.x));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
return vceqh_f16(a.x, b.x);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
return !vceqh_f16(a.x, b.x);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
return vclth_f16(a.x, b.x);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) {
return vcleh_f16(a.x, b.x);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
return vcgth_f16(a.x, b.x);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) {
return vcgeh_f16(a.x, b.x);
}
// We need to distinguish clang as the CUDA compiler from clang as the host compiler,
// invoked by NVCC (e.g. on MacOS). The former needs to see both host and device implementation
// of the functions, while the latter can only deal with one of them.
#elif !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats
#if EIGEN_COMP_CLANG && defined(EIGEN_CUDACC)
// We need to provide emulated *host-side* FP16 operators for clang.
#pragma push_macro("EIGEN_DEVICE_FUNC")
#undef EIGEN_DEVICE_FUNC
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_FP16)
#define EIGEN_DEVICE_FUNC __host__
#else // both host and device need emulated ops.
#define EIGEN_DEVICE_FUNC __host__ __device__
#endif
#endif
// Definitions for CPUs and older HIP+CUDA, mostly working through conversion
// to/from fp32.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
return half(float(a) + float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
return half(float(a) * float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
return half(float(a) - float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
return half(float(a) / float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) {
half result;
result.x = a.x ^ 0x8000;
return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
a = half(float(a) + float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
a = half(float(a) * float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
a = half(float(a) - float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
a = half(float(a) / float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
return numext::equal_strict(float(a),float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
return numext::not_equal_strict(float(a), float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
return float(a) < float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) {
return float(a) <= float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
return float(a) > float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) {
return float(a) >= float(b);
}
#if defined(__clang__) && defined(__CUDA__)
#pragma pop_macro("EIGEN_DEVICE_FUNC")
#endif
#endif // Emulate support for half floats
// Division by an index. Do it in full float precision to avoid accuracy
// issues in converting the denominator to half.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
return half(static_cast<float>(a) / static_cast<float>(b));
}
// Conversion routines, including fallbacks for the host or older CUDA.
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
// these in hardware. If we need more performance on older/other CPUs, they are
// also possible to vectorize directly.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) {
// We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type
// in the hip_fp16 header file, and that will trigger a compile error
// On the other hand, having anything but a return statement also triggers a compile error
// because this is constexpr function.
// Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out
// of this catch22 by having separate bodies for GPU / non GPU
#if defined(EIGEN_HAS_GPU_FP16)
__half_raw h;
h.x = x;
return h;
#else
return __half_raw(x);
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR numext::uint16_t raw_half_as_uint16(const __half_raw& h) {
// HIP/CUDA/Default have a member 'x' of type uint16_t.
// For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast.
// For SYCL, cl::sycl::half is _Float16, so cast directly.
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
return numext::bit_cast<numext::uint16_t>(h.x);
#elif defined(SYCL_DEVICE_ONLY)
return numext::bit_cast<numext::uint16_t>(h);
#else
return h.x;
#endif
}
union float32_bits {
unsigned int u;
float f;
};
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
__half tmp_ff = __float2half(ff);
return *(__half_raw*)&tmp_ff;
#elif defined(EIGEN_HAS_FP16_C)
__half_raw h;
h.x = _cvtss_sh(ff, 0);
return h;
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
__half_raw h;
h.x = static_cast<__fp16>(ff);
return h;
#else
float32_bits f; f.f = ff;
const float32_bits f32infty = { 255 << 23 };
const float32_bits f16max = { (127 + 16) << 23 };
const float32_bits denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
__half_raw o;
o.x = static_cast<numext::uint16_t>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
o.x = static_cast<numext::uint16_t>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
// Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but
// without arithmetic overflow.
f.u += 0xc8000fffU;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
o.x = static_cast<numext::uint16_t>(f.u >> 13);
}
}
o.x |= static_cast<numext::uint16_t>(sign >> 16);
return o;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
return __half2float(h);
#elif defined(EIGEN_HAS_FP16_C)
return _cvtsh_ss(h.x);
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
return static_cast<float>(h.x);
#else
const float32_bits magic = { 113 << 23 };
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
float32_bits o;
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.x & 0x8000) << 16; // sign bit
return o.f;
#endif
}
// --- standard functions ---
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) {
#ifdef EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC
return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) == 0x7c00;
#else
return (a.x & 0x7fff) == 0x7c00;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
return __hisnan(a);
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) > 0x7c00;
#else
return (a.x & 0x7fff) > 0x7c00;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) {
return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
return half(vabsh_f16(a.x));
#else
half result;
result.x = a.x & 0x7FFF;
return result;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
return half(hexp(a));
#else
return half(::expf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) {
return half(numext::expm1(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
#if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
return half(::hlog(a));
#else
return half(::logf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) {
return half(numext::log1p(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) {
return half(::log10f(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
return half(hsqrt(a));
#else
return half(::sqrtf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
return half(::powf(float(a), float(b)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) {
return half(::sinf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) {
return half(::cosf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) {
return half(::tanf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
return half(::tanhf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) {
return half(::asinf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) {
return half(::acosf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
return half(hfloor(a));
#else
return half(::floorf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) {
return half(::rintf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
defined(EIGEN_HIP_DEVICE_COMPILE)
return half(hceil(a));
#else
return half(::ceilf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
return __hlt(b, a) ? b : a;
#else
const float f1 = static_cast<float>(a);
const float f2 = static_cast<float>(b);
return f2 < f1 ? b : a;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) {
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
return __hlt(a, b) ? b : a;
#else
const float f1 = static_cast<float>(a);
const float f2 = static_cast<float>(b);
return f1 < f2 ? b : a;
#endif
}
#ifndef EIGEN_NO_IO
EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) {
os << static_cast<float>(v);
return os;
}
#endif
} // end namespace half_impl
// import Eigen::half_impl::half into Eigen namespace
// using half_impl::half;
namespace internal {
template<>
struct random_default_impl<half, false, false>
{
static inline half run(const half& x, const half& y)
{
return x + (y-x) * half(float(std::rand()) / float(RAND_MAX));
}
static inline half run()
{
return run(half(-1.f), half(1.f));
}
};
template<> struct is_arithmetic<half> { enum { value = true }; };
} // end namespace internal
template<> struct NumTraits<Eigen::half>
: GenericNumTraits<Eigen::half>
{
enum {
IsSigned = true,
IsInteger = false,
IsComplex = false,
RequireInitialization = false
};
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() {
return half_impl::raw_uint16_to_half(0x0800);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() {
return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() {
return half_impl::raw_uint16_to_half(0x7bff);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() {
return half_impl::raw_uint16_to_half(0xfbff);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() {
return half_impl::raw_uint16_to_half(0x7c00);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
return half_impl::raw_uint16_to_half(0x7e00);
}
};
} // end namespace Eigen
#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
#pragma pop_macro("EIGEN_CONSTEXPR")
#endif
namespace std {
#if __cplusplus > 199711L
template <>
struct hash<Eigen::half> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
return static_cast<std::size_t>(a.x);
}
};
#endif
} // end namespace std
// Add the missing shfl_xor intrinsic
#if (defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
defined(EIGEN_HIPCC)
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
#if (EIGEN_CUDA_SDK_VER < 90000) || \
defined(EIGEN_HAS_HIP_FP16)
return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width));
#else
return static_cast<Eigen::half>(__shfl_xor_sync(0xFFFFFFFF, static_cast<float>(var), laneMask, width));
#endif
}
#endif
// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
#if (defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350) || defined(EIGEN_HIPCC)
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast<const Eigen::numext::uint16_t*>(ptr)));
}
#endif
namespace Eigen {
namespace numext {
#if defined(EIGEN_GPU_COMPILE_PHASE)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) {
return (half_impl::isnan)(h);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) {
return (half_impl::isinf)(h);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) {
return (half_impl::isfinite)(h);
}
#endif
template <>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast<Eigen::half, uint16_t>(const uint16_t& src) {
return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src));
}
template <>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) {
return Eigen::half_impl::raw_half_as_uint16(src);
}
} // namespace numext
} // namespace Eigen
#endif // EIGEN_HALF_H