mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-13 16:28:06 +08:00

* disable vectorization on MSVC 2005, as it doesn't have all the required intrinsics. require 2008.
267 lines
9.9 KiB
C++
267 lines
9.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MEMORY_H
|
|
#define EIGEN_MEMORY_H
|
|
|
|
#if defined(EIGEN_VECTORIZE) && !defined(_MSC_VER)
|
|
// it seems we cannot assume posix_memalign is defined in the stdlib header
|
|
extern "C" int posix_memalign (void **, size_t, size_t) throw ();
|
|
#endif
|
|
|
|
/** \internal
|
|
* Static array automatically aligned if the total byte size is a multiple of 16
|
|
*/
|
|
template <typename T, int Size, bool Align> struct ei_aligned_array
|
|
{
|
|
EIGEN_ALIGN_128 T array[Size];
|
|
|
|
ei_aligned_array()
|
|
{
|
|
#ifdef EIGEN_VECTORIZE // we only want this assertion if EIGEN_VECTORIZE is defined.
|
|
// indeed, if it's not defined then WithAlignedOperatorNew is empty and hence there's not much point
|
|
// requiring the user to inherit it! Would be best practice, but we already decided at several places
|
|
// to only do special alignment if vectorization is enabled.
|
|
ei_assert((reinterpret_cast<size_t>(array) & 0xf) == 0
|
|
&& "this assertion is explained here: http://eigen.tuxfamily.org/api/UnalignedArrayAssert.html **** READ THIS WEB PAGE !!! ****");
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T, int Size> struct ei_aligned_array<T,Size,false>
|
|
{
|
|
T array[Size];
|
|
};
|
|
|
|
struct ei_byte_forcing_aligned_malloc
|
|
{
|
|
unsigned char c; // sizeof must be 1.
|
|
};
|
|
template<typename T> struct ei_force_aligned_malloc { enum { ret = 0 }; };
|
|
template<> struct ei_force_aligned_malloc<ei_byte_forcing_aligned_malloc> { enum { ret = 1 }; };
|
|
|
|
/** \internal allocates \a size * sizeof(\a T) bytes. If vectorization is enabled and T is such that a packet
|
|
* containts more than one T, then the returned pointer is guaranteed to have 16 bytes alignment.
|
|
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
|
|
*/
|
|
template<typename T>
|
|
inline T* ei_aligned_malloc(size_t size)
|
|
{
|
|
T* result;
|
|
|
|
#ifdef EIGEN_VECTORIZE
|
|
if(ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret)
|
|
{
|
|
#ifdef _MSC_VER
|
|
result = static_cast<T*>(_aligned_malloc(size*sizeof(T), 16));
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
const int failed = (result == 0);
|
|
#endif
|
|
#else // not MSVC
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
const int failed =
|
|
#endif
|
|
posix_memalign(reinterpret_cast<void**>(&result), 16, size*sizeof(T));
|
|
#endif
|
|
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
if(failed)
|
|
throw std::bad_alloc();
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
result = new T[size]; // here we really want a new, not a malloc. Justification: if the user uses Eigen on
|
|
// some fancy scalar type such as multiple-precision numbers, and this type has a custom operator new,
|
|
// then we want to honor this operator new! Anyway this type won't have vectorization so the vectorizing path
|
|
// is irrelevant here. Yes, we should say somewhere in the docs that if the user uses a custom scalar type then
|
|
// he can't have both vectorization and a custom operator new on his scalar type.
|
|
|
|
return result;
|
|
}
|
|
|
|
/** \internal free memory allocated with ei_aligned_malloc */
|
|
template<typename T>
|
|
inline void ei_aligned_free(T* ptr)
|
|
{
|
|
#ifdef EIGEN_VECTORIZE
|
|
if (ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret)
|
|
#ifdef _MSC_VER
|
|
_aligned_free(ptr);
|
|
#else
|
|
free(ptr);
|
|
#endif
|
|
else
|
|
#endif
|
|
delete[] ptr;
|
|
}
|
|
|
|
/** \internal \returns the number of elements which have to be skipped such that data are 16 bytes aligned */
|
|
template<typename Scalar>
|
|
inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
|
{
|
|
typedef typename ei_packet_traits<Scalar>::type Packet;
|
|
const int PacketSize = ei_packet_traits<Scalar>::size;
|
|
const int PacketAlignedMask = PacketSize-1;
|
|
const bool Vectorized = PacketSize>1;
|
|
return Vectorized
|
|
? std::min<int>( (PacketSize - (int((size_t(ptr)/sizeof(Scalar))) & PacketAlignedMask))
|
|
& PacketAlignedMask, maxOffset)
|
|
: 0;
|
|
}
|
|
|
|
/** \internal
|
|
* ei_alloc_stack(TYPE,SIZE) allocates sizeof(TYPE)*SIZE bytes on the stack if sizeof(TYPE)*SIZE is
|
|
* smaller than EIGEN_STACK_ALLOCATION_LIMIT. Otherwise the memory is allocated using the operator new.
|
|
* Data allocated with ei_alloc_stack \b must be freed by calling ei_free_stack(PTR,TYPE,SIZE).
|
|
* \code
|
|
* float * data = ei_alloc_stack(float,array.size());
|
|
* // ...
|
|
* ei_free_stack(data,float,array.size());
|
|
* \endcode
|
|
*/
|
|
#ifdef __linux__
|
|
# define ei_alloc_stack(TYPE,SIZE) ((sizeof(TYPE)*(SIZE)>16000000) ? new TYPE[SIZE] : (TYPE*)alloca(sizeof(TYPE)*(SIZE)))
|
|
# define ei_free_stack(PTR,TYPE,SIZE) if (sizeof(TYPE)*SIZE>16000000) delete[] PTR
|
|
#else
|
|
# define ei_alloc_stack(TYPE,SIZE) new TYPE[SIZE]
|
|
# define ei_free_stack(PTR,TYPE,SIZE) delete[] PTR
|
|
#endif
|
|
|
|
/** \class WithAlignedOperatorNew
|
|
*
|
|
* \brief Enforces instances of inherited classes to be 16 bytes aligned when allocated with operator new
|
|
*
|
|
* When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned
|
|
* on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.:
|
|
* - Vector2d, Vector4f, Vector4i, Vector4d,
|
|
* - Matrix2d, Matrix4f, Matrix4i, Matrix4d,
|
|
* - etc.
|
|
* When an object is statically allocated, the compiler will automatically and always enforces 16 bytes
|
|
* alignment of the data when needed. However some troubles might appear when data are dynamically allocated.
|
|
* Let's pick an example:
|
|
* \code
|
|
* struct Foo {
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* Foo obj1; // static allocation
|
|
* obj1.some_vector = Vector4f(..); // => OK
|
|
*
|
|
* Foo *pObj2 = new Foo; // dynamic allocation
|
|
* pObj2->some_vector = Vector4f(..); // => !! might segfault !!
|
|
* \endcode
|
|
* Here, the problem is that operator new is not aware of the compile time alignment requirement of the
|
|
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes
|
|
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by
|
|
* overloading the operator new to return aligned data when the vectorization is enabled.
|
|
* Here is a similar safe example:
|
|
* \code
|
|
* struct Foo : WithAlignedOperatorNew {
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* Foo *pObj2 = new Foo; // dynamic allocation
|
|
* pObj2->some_vector = Vector4f(..); // => SAFE !
|
|
* \endcode
|
|
*
|
|
* \sa class ei_new_allocator
|
|
*/
|
|
struct WithAlignedOperatorNew
|
|
{
|
|
#ifdef EIGEN_VECTORIZE
|
|
|
|
void *operator new(size_t size) throw()
|
|
{
|
|
return ei_aligned_malloc<ei_byte_forcing_aligned_malloc>(size);
|
|
}
|
|
|
|
void *operator new[](size_t size) throw()
|
|
{
|
|
return ei_aligned_malloc<ei_byte_forcing_aligned_malloc>(size);
|
|
}
|
|
|
|
void operator delete(void * ptr) { ei_aligned_free(static_cast<ei_byte_forcing_aligned_malloc *>(ptr)); }
|
|
void operator delete[](void * ptr) { ei_aligned_free(static_cast<ei_byte_forcing_aligned_malloc *>(ptr)); }
|
|
|
|
#endif
|
|
};
|
|
|
|
template<typename T, int SizeAtCompileTime,
|
|
bool NeedsToAlign = (SizeAtCompileTime!=Dynamic) && ((sizeof(T)*SizeAtCompileTime)%16==0)>
|
|
struct ei_with_aligned_operator_new : WithAlignedOperatorNew {};
|
|
|
|
template<typename T, int SizeAtCompileTime>
|
|
struct ei_with_aligned_operator_new<T,SizeAtCompileTime,false> {};
|
|
|
|
/** \class ei_new_allocator
|
|
*
|
|
* \brief stl compatible allocator to use with with fixed-size vector and matrix types
|
|
*
|
|
* STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator,
|
|
* ei_new_allocator call operator new on the type \a T and not the general new operator ignoring
|
|
* overloaded version of operator new.
|
|
*
|
|
* Example:
|
|
* \code
|
|
* // Vector4f requires 16 bytes alignment:
|
|
* std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4;
|
|
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
|
* std::vector<Vector3f> dataVec3;
|
|
*
|
|
* struct Foo : WithAlignedOperatorNew {
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* std::vector<Foo,ei_new_allocator<Foo> > dataFoo;
|
|
* \endcode
|
|
*
|
|
* \sa class WithAlignedOperatorNew
|
|
*/
|
|
template<typename T> class ei_new_allocator
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
template<typename OtherType>
|
|
struct rebind
|
|
{ typedef ei_new_allocator<OtherType> other; };
|
|
|
|
T* address(T& ref) const { return &ref; }
|
|
const T* address(const T& ref) const { return &ref; }
|
|
T* allocate(size_t size, const void* = 0) { return new T[size]; }
|
|
void deallocate(T* ptr, size_t) { delete[] ptr; }
|
|
size_t max_size() const { return size_t(-1) / sizeof(T); }
|
|
// FIXME I'm note sure about this construction...
|
|
void construct(T* ptr, const T& refObj) { ::new(ptr) T(refObj); }
|
|
void destroy(T* ptr) { ptr->~T(); }
|
|
};
|
|
|
|
#endif // EIGEN_MEMORY_H
|