eigen/Eigen/src/Sparse/SparseArray.h
Gael Guennebaud b730c6f57d Sparse module: add experimental support for TAUCS and CHOLMOD with:
* bidirectionnal mapping
 * full cholesky factorization
2008-10-05 13:38:38 +00:00

145 lines
3.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSE_ARRAY_H
#define EIGEN_SPARSE_ARRAY_H
/** Stores a sparse set of values as a list of values and a list of indices.
*
*/
template<typename Scalar>
class SparseArray
{
public:
SparseArray()
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
{}
SparseArray(int size)
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
{
resize(size);
}
SparseArray(const SparseArray& other)
{
*this = other;
}
SparseArray& operator=(const SparseArray& other)
{
resize(other.size());
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
memcpy(m_indices, other.m_indices, m_size * sizeof(int));
return *this;
}
void swap(SparseArray& other)
{
std::swap(m_values, other.m_values);
std::swap(m_indices, other.m_indices);
std::swap(m_size, other.m_size);
std::swap(m_allocatedSize, other.m_allocatedSize);
}
~SparseArray()
{
delete[] m_values;
delete[] m_indices;
}
void reserve(int size)
{
int newAllocatedSize = m_size + size;
if (newAllocatedSize > m_allocatedSize)
reallocate(newAllocatedSize);
}
void squeeze()
{
if (m_allocatedSize>m_size)
reallocate(m_size);
}
void resize(int size, int reserveSizeFactor = 0)
{
if (m_allocatedSize<size)
reallocate(size + reserveSizeFactor*size);
m_size = size;
}
void append(const Scalar& v, int i)
{
int id = m_size;
resize(m_size+1, 1);
m_values[id] = v;
m_indices[id] = i;
}
int size() const { return m_size; }
void clear() { m_size = 0; }
Scalar& value(int i) { return m_values[i]; }
const Scalar& value(int i) const { return m_values[i]; }
int& index(int i) { return m_indices[i]; }
const int& index(int i) const { return m_indices[i]; }
static SparseArray Map(int* indices, Scalar* values, int size)
{
SparseArray res;
res.m_indices = indices;
res.m_values = values;
res.m_allocatedSize = res.m_size = size;
return res;
}
protected:
void reallocate(int size)
{
Scalar* newValues = new Scalar[size];
int* newIndices = new int[size];
int copySize = std::min(size, m_size);
// copy
memcpy(newValues, m_values, copySize * sizeof(Scalar));
memcpy(newIndices, m_indices, copySize * sizeof(int));
// delete old stuff
delete[] m_values;
delete[] m_indices;
m_values = newValues;
m_indices = newIndices;
m_allocatedSize = size;
}
protected:
Scalar* m_values;
int* m_indices;
int m_size;
int m_allocatedSize;
};
#endif // EIGEN_SPARSE_ARRAY_H