eigen/Eigen/src/Core/CwiseUnaryOp.h
Gael Guennebaud c4c70669d1 Big rewrite in the Sparse module: SparseMatrixBase no longer inherits MatrixBase.
That means a lot of features which were available for sparse matrices
via the dense (and super slow) implemention are no longer available.
All features which make sense for sparse matrices (aka can be implemented efficiently) will be
implemented soon, but don't expect to see an API as rich as for the dense path.
Other changes:
* no block(), row(), col() anymore.
* instead use .innerVector() to get a col or row vector of a matrix.
* .segment(), start(), end() will be back soon, not sure for block()
* faster cwise product
2009-01-14 14:24:10 +00:00

230 lines
7.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
/** \class CwiseUnaryOp
*
* \brief Generic expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param UnaryOp template functor implementing the operator
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents an expression of a generic unary operator of a matrix or a vector.
* It is the return type of the unary operator-, of a matrix or a vector, and most
* of the time this is the only way it is used.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
template<typename UnaryOp, typename MatrixType>
struct ei_traits<CwiseUnaryOp<UnaryOp, MatrixType> >
: ei_traits<MatrixType>
{
typedef typename ei_result_of<
UnaryOp(typename MatrixType::Scalar)
>::type Scalar;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
Flags = (_MatrixTypeNested::Flags & (
HereditaryBits | LinearAccessBit | AlignedBit
| (ei_functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0))),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost + ei_functor_traits<UnaryOp>::Cost
};
};
template<typename UnaryOp, typename MatrixType>
class CwiseUnaryOp : ei_no_assignment_operator,
public MatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
inline CwiseUnaryOp(const MatrixType& mat, const UnaryOp& func = UnaryOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_STRONG_INLINE int rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_matrix.cols(); }
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
{
return m_functor(m_matrix.coeff(row, col));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return m_functor.packetOp(m_matrix.template packet<LoadMode>(row, col));
}
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
{
return m_functor(m_matrix.coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return m_functor.packetOp(m_matrix.template packet<LoadMode>(index));
}
protected:
const typename MatrixType::Nested m_matrix;
const UnaryOp m_functor;
};
/** \returns an expression of a custom coefficient-wise unary operator \a func of *this
*
* The template parameter \a CustomUnaryOp is the type of the functor
* of the custom unary operator.
*
* \addexample CustomCwiseUnaryFunctors \label How to use custom coeff wise unary functors
*
* Example:
* \include class_CwiseUnaryOp.cpp
* Output: \verbinclude class_CwiseUnaryOp.out
*
* \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, Cwise::abs
*/
template<typename Derived>
template<typename CustomUnaryOp>
EIGEN_STRONG_INLINE const CwiseUnaryOp<CustomUnaryOp, Derived>
MatrixBase<Derived>::unaryExpr(const CustomUnaryOp& func) const
{
return CwiseUnaryOp<CustomUnaryOp, Derived>(derived(), func);
}
/** \returns an expression of the opposite of \c *this
*/
template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_opposite_op<typename ei_traits<Derived>::Scalar>,Derived>
MatrixBase<Derived>::operator-() const
{
return derived();
}
/** \returns an expression of the coefficient-wise absolute value of \c *this
*
* Example: \include Cwise_abs.cpp
* Output: \verbinclude Cwise_abs.out
*
* \sa abs2()
*/
template<typename ExpressionType>
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs_op)
Cwise<ExpressionType>::abs() const
{
return _expression();
}
/** \returns an expression of the coefficient-wise squared absolute value of \c *this
*
* Example: \include Cwise_abs2.cpp
* Output: \verbinclude Cwise_abs2.out
*
* \sa abs(), square()
*/
template<typename ExpressionType>
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs2_op)
Cwise<ExpressionType>::abs2() const
{
return _expression();
}
/** \returns an expression of the complex conjugate of \c *this.
*
* \sa adjoint() */
template<typename Derived>
EIGEN_STRONG_INLINE typename MatrixBase<Derived>::ConjugateReturnType
MatrixBase<Derived>::conjugate() const
{
return ConjugateReturnType(derived());
}
/** \returns an expression of the real part of \c *this.
*
* \sa imag() */
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::RealReturnType
MatrixBase<Derived>::real() const { return derived(); }
/** \returns an expression of the imaginary part of \c *this.
*
* \sa real() */
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ImagReturnType
MatrixBase<Derived>::imag() const { return derived(); }
/** \returns an expression of *this with the \a Scalar type casted to
* \a NewScalar.
*
* The template parameter \a NewScalar is the type we are casting the scalars to.
*
* \sa class CwiseUnaryOp
*/
template<typename Derived>
template<typename NewType>
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_cast_op<typename ei_traits<Derived>::Scalar, NewType>, Derived>
MatrixBase<Derived>::cast() const
{
return derived();
}
/** \relates MatrixBase */
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ScalarMultipleReturnType
MatrixBase<Derived>::operator*(const Scalar& scalar) const
{
return CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived>
(derived(), ei_scalar_multiple_op<Scalar>(scalar));
}
/** \relates MatrixBase */
template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::operator/(const Scalar& scalar) const
{
return CwiseUnaryOp<ei_scalar_quotient1_op<Scalar>, Derived>
(derived(), ei_scalar_quotient1_op<Scalar>(scalar));
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
MatrixBase<Derived>::operator*=(const Scalar& other)
{
return *this = *this * other;
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
MatrixBase<Derived>::operator/=(const Scalar& other)
{
return *this = *this / other;
}
#endif // EIGEN_CWISE_UNARY_OP_H