eigen/doc/snippets/Tridiagonalization_diagonal.cpp
Jitse Niesen 4a5ebcd1ce Fix compilation of Tridiagonalization_diagonal example.
After changeset 0d6321225786bc3d95f1dbe5236f07c5e5e96179
, matrixT() is a real matrix even if the matrix
which is decomposed is complex.
2010-12-12 13:53:42 +00:00

14 lines
567 B
C++

MatrixXcd X = MatrixXcd::Random(4,4);
MatrixXcd A = X + X.adjoint();
cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl;
Tridiagonalization<MatrixXcd> triOfA(A);
MatrixXd T = triOfA.matrixT();
cout << "The tridiagonal matrix T is:" << endl << triOfA.matrixT() << endl << endl;
cout << "We can also extract the diagonals of T directly ..." << endl;
VectorXd diag = triOfA.diagonal();
cout << "The diagonal is:" << endl << diag << endl;
VectorXd subdiag = triOfA.subDiagonal();
cout << "The subdiagonal is:" << endl << subdiag << endl;