mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-30 16:52:01 +08:00
352 lines
11 KiB
C++
352 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MATRIX_EXPONENTIAL
|
|
#define EIGEN_MATRIX_EXPONENTIAL
|
|
|
|
#ifdef _MSC_VER
|
|
template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); }
|
|
#endif
|
|
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
* \brief Class for computing the matrix exponential.
|
|
* \tparam MatrixType type of the argument of the exponential,
|
|
* expected to be an instantiation of the Matrix class template.
|
|
*/
|
|
template <typename MatrixType>
|
|
class MatrixExponential {
|
|
|
|
public:
|
|
|
|
/** \brief Constructor.
|
|
*
|
|
* The class stores a reference to \p M, so it should not be
|
|
* changed (or destroyed) before compute() is called.
|
|
*
|
|
* \param[in] M matrix whose exponential is to be computed.
|
|
*/
|
|
MatrixExponential(const MatrixType &M);
|
|
|
|
/** \brief Computes the matrix exponential.
|
|
*
|
|
* \param[out] result the matrix exponential of \p M in the constructor.
|
|
*/
|
|
template <typename ResultType>
|
|
void compute(ResultType &result);
|
|
|
|
private:
|
|
|
|
// Prevent copying
|
|
MatrixExponential(const MatrixExponential&);
|
|
MatrixExponential& operator=(const MatrixExponential&);
|
|
|
|
/** \brief Compute the (3,3)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* \param[in] A Argument of matrix exponential
|
|
*/
|
|
void pade3(const MatrixType &A);
|
|
|
|
/** \brief Compute the (5,5)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* \param[in] A Argument of matrix exponential
|
|
*/
|
|
void pade5(const MatrixType &A);
|
|
|
|
/** \brief Compute the (7,7)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* \param[in] A Argument of matrix exponential
|
|
*/
|
|
void pade7(const MatrixType &A);
|
|
|
|
/** \brief Compute the (9,9)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* \param[in] A Argument of matrix exponential
|
|
*/
|
|
void pade9(const MatrixType &A);
|
|
|
|
/** \brief Compute the (13,13)-Padé approximant to the exponential.
|
|
*
|
|
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
|
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
|
*
|
|
* \param[in] A Argument of matrix exponential
|
|
*/
|
|
void pade13(const MatrixType &A);
|
|
|
|
/** \brief Compute Padé approximant to the exponential.
|
|
*
|
|
* Computes \c m_U, \c m_V and \c m_squarings such that
|
|
* \f$ (V+U)(V-U)^{-1} \f$ is a Padé of
|
|
* \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
|
|
* degree of the Padé approximant and the value of
|
|
* squarings are chosen such that the approximation error is no
|
|
* more than the round-off error.
|
|
*
|
|
* The argument of this function should correspond with the (real
|
|
* part of) the entries of \c m_M. It is used to select the
|
|
* correct implementation using overloading.
|
|
*/
|
|
void computeUV(double);
|
|
|
|
/** \brief Compute Padé approximant to the exponential.
|
|
*
|
|
* \sa computeUV(double);
|
|
*/
|
|
void computeUV(float);
|
|
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
/** \brief Reference to matrix whose exponential is to be computed. */
|
|
typename internal::nested<MatrixType>::type m_M;
|
|
|
|
/** \brief Even-degree terms in numerator of Padé approximant. */
|
|
MatrixType m_U;
|
|
|
|
/** \brief Odd-degree terms in numerator of Padé approximant. */
|
|
MatrixType m_V;
|
|
|
|
/** \brief Used for temporary storage. */
|
|
MatrixType m_tmp1;
|
|
|
|
/** \brief Used for temporary storage. */
|
|
MatrixType m_tmp2;
|
|
|
|
/** \brief Identity matrix of the same size as \c m_M. */
|
|
MatrixType m_Id;
|
|
|
|
/** \brief Number of squarings required in the last step. */
|
|
int m_squarings;
|
|
|
|
/** \brief L1 norm of m_M. */
|
|
float m_l1norm;
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
|
|
m_M(M),
|
|
m_U(M.rows(),M.cols()),
|
|
m_V(M.rows(),M.cols()),
|
|
m_tmp1(M.rows(),M.cols()),
|
|
m_tmp2(M.rows(),M.cols()),
|
|
m_Id(MatrixType::Identity(M.rows(), M.cols())),
|
|
m_squarings(0),
|
|
m_l1norm(static_cast<float>(M.cwiseAbs().colwise().sum().maxCoeff()))
|
|
{
|
|
/* empty body */
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
template <typename ResultType>
|
|
void MatrixExponential<MatrixType>::compute(ResultType &result)
|
|
{
|
|
computeUV(RealScalar());
|
|
m_tmp1 = m_U + m_V; // numerator of Pade approximant
|
|
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
|
|
result = m_tmp2.partialPivLu().solve(m_tmp1);
|
|
for (int i=0; i<m_squarings; i++)
|
|
result *= result; // undo scaling by repeated squaring
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
|
|
{
|
|
const Scalar b[] = {120., 60., 12., 1.};
|
|
m_tmp1.noalias() = A * A;
|
|
m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
|
|
m_U.noalias() = A * m_tmp2;
|
|
m_V = b[2]*m_tmp1 + b[0]*m_Id;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
|
|
{
|
|
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
|
|
MatrixType A2 = A * A;
|
|
m_tmp1.noalias() = A2 * A2;
|
|
m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
|
|
m_U.noalias() = A * m_tmp2;
|
|
m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
|
|
{
|
|
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
|
|
MatrixType A2 = A * A;
|
|
MatrixType A4 = A2 * A2;
|
|
m_tmp1.noalias() = A4 * A2;
|
|
m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
|
m_U.noalias() = A * m_tmp2;
|
|
m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
|
|
{
|
|
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
|
2162160., 110880., 3960., 90., 1.};
|
|
MatrixType A2 = A * A;
|
|
MatrixType A4 = A2 * A2;
|
|
MatrixType A6 = A4 * A2;
|
|
m_tmp1.noalias() = A6 * A2;
|
|
m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
|
m_U.noalias() = A * m_tmp2;
|
|
m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
|
|
{
|
|
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
|
|
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
|
|
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
|
|
MatrixType A2 = A * A;
|
|
MatrixType A4 = A2 * A2;
|
|
m_tmp1.noalias() = A4 * A2;
|
|
m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
|
|
m_tmp2.noalias() = m_tmp1 * m_V;
|
|
m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
|
m_U.noalias() = A * m_tmp2;
|
|
m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
|
|
m_V.noalias() = m_tmp1 * m_tmp2;
|
|
m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void MatrixExponential<MatrixType>::computeUV(float)
|
|
{
|
|
using std::max;
|
|
using std::pow;
|
|
using std::ceil;
|
|
if (m_l1norm < 4.258730016922831e-001) {
|
|
pade3(m_M);
|
|
} else if (m_l1norm < 1.880152677804762e+000) {
|
|
pade5(m_M);
|
|
} else {
|
|
const float maxnorm = 3.925724783138660f;
|
|
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
|
|
MatrixType A = m_M / pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
|
|
pade7(A);
|
|
}
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void MatrixExponential<MatrixType>::computeUV(double)
|
|
{
|
|
using std::max;
|
|
using std::pow;
|
|
using std::ceil;
|
|
if (m_l1norm < 1.495585217958292e-002) {
|
|
pade3(m_M);
|
|
} else if (m_l1norm < 2.539398330063230e-001) {
|
|
pade5(m_M);
|
|
} else if (m_l1norm < 9.504178996162932e-001) {
|
|
pade7(m_M);
|
|
} else if (m_l1norm < 2.097847961257068e+000) {
|
|
pade9(m_M);
|
|
} else {
|
|
const double maxnorm = 5.371920351148152;
|
|
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
|
|
MatrixType A = m_M / pow(Scalar(2), Scalar(m_squarings));
|
|
pade13(A);
|
|
}
|
|
}
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
*
|
|
* \brief Proxy for the matrix exponential of some matrix (expression).
|
|
*
|
|
* \tparam Derived Type of the argument to the matrix exponential.
|
|
*
|
|
* This class holds the argument to the matrix exponential until it
|
|
* is assigned or evaluated for some other reason (so the argument
|
|
* should not be changed in the meantime). It is the return type of
|
|
* MatrixBase::exp() and most of the time this is the only way it is
|
|
* used.
|
|
*/
|
|
template<typename Derived> struct MatrixExponentialReturnValue
|
|
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
|
|
{
|
|
typedef typename Derived::Index Index;
|
|
public:
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] src %Matrix (expression) forming the argument of the
|
|
* matrix exponential.
|
|
*/
|
|
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
|
|
|
|
/** \brief Compute the matrix exponential.
|
|
*
|
|
* \param[out] result the matrix exponential of \p src in the
|
|
* constructor.
|
|
*/
|
|
template <typename ResultType>
|
|
inline void evalTo(ResultType& result) const
|
|
{
|
|
const typename Derived::PlainObject srcEvaluated = m_src.eval();
|
|
MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
|
|
me.compute(result);
|
|
}
|
|
|
|
Index rows() const { return m_src.rows(); }
|
|
Index cols() const { return m_src.cols(); }
|
|
|
|
protected:
|
|
const Derived& m_src;
|
|
private:
|
|
MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
|
|
};
|
|
|
|
namespace internal {
|
|
template<typename Derived>
|
|
struct traits<MatrixExponentialReturnValue<Derived> >
|
|
{
|
|
typedef typename Derived::PlainObject ReturnType;
|
|
};
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
|
|
{
|
|
eigen_assert(rows() == cols());
|
|
return MatrixExponentialReturnValue<Derived>(derived());
|
|
}
|
|
|
|
#endif // EIGEN_MATRIX_EXPONENTIAL
|