eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
Gael Guennebaud 42e2578ef9 the min/max macros to detect unprotected min/max were undefined by some std header,
so let's declare them after and do the respective fixes ;)
2011-08-19 14:18:05 +02:00

352 lines
11 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL
#ifdef _MSC_VER
template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); }
#endif
/** \ingroup MatrixFunctions_Module
* \brief Class for computing the matrix exponential.
* \tparam MatrixType type of the argument of the exponential,
* expected to be an instantiation of the Matrix class template.
*/
template <typename MatrixType>
class MatrixExponential {
public:
/** \brief Constructor.
*
* The class stores a reference to \p M, so it should not be
* changed (or destroyed) before compute() is called.
*
* \param[in] M matrix whose exponential is to be computed.
*/
MatrixExponential(const MatrixType &M);
/** \brief Computes the matrix exponential.
*
* \param[out] result the matrix exponential of \p M in the constructor.
*/
template <typename ResultType>
void compute(ResultType &result);
private:
// Prevent copying
MatrixExponential(const MatrixExponential&);
MatrixExponential& operator=(const MatrixExponential&);
/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param[in] A Argument of matrix exponential
*/
void pade3(const MatrixType &A);
/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param[in] A Argument of matrix exponential
*/
void pade5(const MatrixType &A);
/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param[in] A Argument of matrix exponential
*/
void pade7(const MatrixType &A);
/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param[in] A Argument of matrix exponential
*/
void pade9(const MatrixType &A);
/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param[in] A Argument of matrix exponential
*/
void pade13(const MatrixType &A);
/** \brief Compute Pad&eacute; approximant to the exponential.
*
* Computes \c m_U, \c m_V and \c m_squarings such that
* \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
* \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
* degree of the Pad&eacute; approximant and the value of
* squarings are chosen such that the approximation error is no
* more than the round-off error.
*
* The argument of this function should correspond with the (real
* part of) the entries of \c m_M. It is used to select the
* correct implementation using overloading.
*/
void computeUV(double);
/** \brief Compute Pad&eacute; approximant to the exponential.
*
* \sa computeUV(double);
*/
void computeUV(float);
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \brief Reference to matrix whose exponential is to be computed. */
typename internal::nested<MatrixType>::type m_M;
/** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_U;
/** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_V;
/** \brief Used for temporary storage. */
MatrixType m_tmp1;
/** \brief Used for temporary storage. */
MatrixType m_tmp2;
/** \brief Identity matrix of the same size as \c m_M. */
MatrixType m_Id;
/** \brief Number of squarings required in the last step. */
int m_squarings;
/** \brief L1 norm of m_M. */
float m_l1norm;
};
template <typename MatrixType>
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
m_M(M),
m_U(M.rows(),M.cols()),
m_V(M.rows(),M.cols()),
m_tmp1(M.rows(),M.cols()),
m_tmp2(M.rows(),M.cols()),
m_Id(MatrixType::Identity(M.rows(), M.cols())),
m_squarings(0),
m_l1norm(static_cast<float>(M.cwiseAbs().colwise().sum().maxCoeff()))
{
/* empty body */
}
template <typename MatrixType>
template <typename ResultType>
void MatrixExponential<MatrixType>::compute(ResultType &result)
{
computeUV(RealScalar());
m_tmp1 = m_U + m_V; // numerator of Pade approximant
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
result = m_tmp2.partialPivLu().solve(m_tmp1);
for (int i=0; i<m_squarings; i++)
result *= result; // undo scaling by repeated squaring
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
{
const Scalar b[] = {120., 60., 12., 1.};
m_tmp1.noalias() = A * A;
m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[2]*m_tmp1 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
{
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
MatrixType A2 = A * A;
m_tmp1.noalias() = A2 * A2;
m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
{
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
m_tmp1.noalias() = A4 * A2;
m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
{
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
MatrixType A6 = A4 * A2;
m_tmp1.noalias() = A6 * A2;
m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
{
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
MatrixType A2 = A * A;
MatrixType A4 = A2 * A2;
m_tmp1.noalias() = A4 * A2;
m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
m_tmp2.noalias() = m_tmp1 * m_V;
m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
m_U.noalias() = A * m_tmp2;
m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
m_V.noalias() = m_tmp1 * m_tmp2;
m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
using std::max;
using std::pow;
using std::ceil;
if (m_l1norm < 4.258730016922831e-001) {
pade3(m_M);
} else if (m_l1norm < 1.880152677804762e+000) {
pade5(m_M);
} else {
const float maxnorm = 3.925724783138660f;
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = m_M / pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
pade7(A);
}
}
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
using std::max;
using std::pow;
using std::ceil;
if (m_l1norm < 1.495585217958292e-002) {
pade3(m_M);
} else if (m_l1norm < 2.539398330063230e-001) {
pade5(m_M);
} else if (m_l1norm < 9.504178996162932e-001) {
pade7(m_M);
} else if (m_l1norm < 2.097847961257068e+000) {
pade9(m_M);
} else {
const double maxnorm = 5.371920351148152;
m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = m_M / pow(Scalar(2), Scalar(m_squarings));
pade13(A);
}
}
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix exponential of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix exponential.
*
* This class holds the argument to the matrix exponential until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::exp() and most of the time this is the only way it is
* used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix exponential.
*/
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix exponential.
*
* \param[out] result the matrix exponential of \p src in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename Derived::PlainObject srcEvaluated = m_src.eval();
MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
me.compute(result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const Derived& m_src;
private:
MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
};
namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
eigen_assert(rows() == cols());
return MatrixExponentialReturnValue<Derived>(derived());
}
#endif // EIGEN_MATRIX_EXPONENTIAL