mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
152 lines
6.0 KiB
C++
152 lines
6.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
static bool g_called;
|
|
#define EIGEN_SCALAR_BINARY_OP_PLUGIN \
|
|
{ g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); }
|
|
|
|
#include "main.h"
|
|
|
|
template <typename MatrixType>
|
|
void linearStructure(const MatrixType& m) {
|
|
using std::abs;
|
|
/* this test covers the following files:
|
|
CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
|
|
*/
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
while (abs(s1) < RealScalar(1e-3)) s1 = internal::random<Scalar>();
|
|
|
|
Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
|
|
|
|
VERIFY_IS_APPROX(-(-m1), m1);
|
|
VERIFY_IS_APPROX(m1 + m1, 2 * m1);
|
|
VERIFY_IS_APPROX(m1 + m2 - m1, m2);
|
|
VERIFY_IS_APPROX(-m2 + m1 + m2, m1);
|
|
VERIFY_IS_APPROX(m1 * s1, s1 * m1);
|
|
VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
|
|
VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2);
|
|
m3 = m2;
|
|
m3 += m1;
|
|
VERIFY_IS_APPROX(m3, m1 + m2);
|
|
m3 = m2;
|
|
m3 -= m1;
|
|
VERIFY_IS_APPROX(m3, m2 - m1);
|
|
m3 = m2;
|
|
m3 *= s1;
|
|
VERIFY_IS_APPROX(m3, s1 * m2);
|
|
if (!NumTraits<Scalar>::IsInteger) {
|
|
m3 = m2;
|
|
m3 /= s1;
|
|
VERIFY_IS_APPROX(m3, m2 / s1);
|
|
}
|
|
|
|
// again, test operator() to check const-qualification
|
|
VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c)));
|
|
VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c)));
|
|
VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
|
|
VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c)));
|
|
VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1);
|
|
if (!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1);
|
|
|
|
// use .block to disable vectorization and compare to the vectorized version
|
|
VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1);
|
|
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1));
|
|
VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1);
|
|
VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1);
|
|
}
|
|
|
|
// Make sure that complex * real and real * complex are properly optimized
|
|
template <typename MatrixType>
|
|
void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
RealScalar s = internal::random<RealScalar>();
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(s * m1, Scalar(s) * m1);
|
|
VERIFY(g_called && "real * matrix<complex> not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> * real not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> / real not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array());
|
|
VERIFY(g_called && "real + matrix<complex> not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> + real not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array());
|
|
VERIFY(g_called && "real - matrix<complex> not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> - real not properly optimized");
|
|
}
|
|
|
|
template <int>
|
|
void linearstructure_overflow() {
|
|
// make sure that /=scalar and /scalar do not overflow
|
|
// rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
|
|
Matrix4d m2, m3;
|
|
m3 = m2 = Matrix4d::Random() * 1e-20;
|
|
m2 = m2 / 4.9e-320;
|
|
VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
|
|
m3 /= 4.9e-320;
|
|
VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(linearstructure) {
|
|
g_called = true;
|
|
VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(linearStructure(Matrix<float, 1, 1>()));
|
|
CALL_SUBTEST_2(linearStructure(Matrix2f()));
|
|
CALL_SUBTEST_3(linearStructure(Vector3d()));
|
|
CALL_SUBTEST_4(linearStructure(Matrix4d()));
|
|
CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
|
|
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
|
|
CALL_SUBTEST_6(linearStructure(
|
|
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_7(linearStructure(
|
|
MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
|
|
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
|
|
CALL_SUBTEST_9(linearStructure(
|
|
ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_10(linearStructure(
|
|
ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
|
|
CALL_SUBTEST_11(real_complex<Matrix4cd>());
|
|
CALL_SUBTEST_11(real_complex<MatrixXcf>(10, 10));
|
|
CALL_SUBTEST_11(real_complex<ArrayXXcf>(10, 10));
|
|
}
|
|
CALL_SUBTEST_4(linearstructure_overflow<0>());
|
|
}
|