mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 09:39:34 +08:00
204 lines
7.1 KiB
C++
204 lines
7.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/Polynomials>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
|
|
using namespace std;
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
template <int Size>
|
|
struct increment_if_fixed_size {
|
|
enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
|
|
};
|
|
} // namespace internal
|
|
} // namespace Eigen
|
|
|
|
template <typename PolynomialType>
|
|
PolynomialType polyder(const PolynomialType& p) {
|
|
typedef typename PolynomialType::Scalar Scalar;
|
|
PolynomialType res(p.size());
|
|
for (Index i = 1; i < p.size(); ++i) res[i - 1] = p[i] * Scalar(i);
|
|
res[p.size() - 1] = 0.;
|
|
return res;
|
|
}
|
|
|
|
template <int Deg, typename POLYNOMIAL, typename SOLVER>
|
|
bool aux_evalSolver(const POLYNOMIAL& pols, SOLVER& psolve) {
|
|
typedef typename POLYNOMIAL::Scalar Scalar;
|
|
typedef typename POLYNOMIAL::RealScalar RealScalar;
|
|
|
|
typedef typename SOLVER::RootsType RootsType;
|
|
typedef Matrix<RealScalar, Deg, 1> EvalRootsType;
|
|
|
|
const Index deg = pols.size() - 1;
|
|
|
|
// Test template constructor from coefficient vector
|
|
SOLVER solve_constr(pols);
|
|
|
|
psolve.compute(pols);
|
|
const RootsType& roots(psolve.roots());
|
|
EvalRootsType evr(deg);
|
|
POLYNOMIAL pols_der = polyder(pols);
|
|
EvalRootsType der(deg);
|
|
for (int i = 0; i < roots.size(); ++i) {
|
|
evr[i] = std::abs(poly_eval(pols, roots[i]));
|
|
der[i] = numext::maxi(RealScalar(1.), std::abs(poly_eval(pols_der, roots[i])));
|
|
}
|
|
|
|
// we need to divide by the magnitude of the derivative because
|
|
// with a high derivative is very small error in the value of the root
|
|
// yiels a very large error in the polynomial evaluation.
|
|
bool evalToZero = (evr.cwiseQuotient(der)).isZero(test_precision<Scalar>());
|
|
if (!evalToZero) {
|
|
cerr << "WRONG root: " << endl;
|
|
cerr << "Polynomial: " << pols.transpose() << endl;
|
|
cerr << "Roots found: " << roots.transpose() << endl;
|
|
cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
|
|
cerr << endl;
|
|
}
|
|
|
|
std::vector<RealScalar> rootModuli(roots.size());
|
|
Map<EvalRootsType> aux(&rootModuli[0], roots.size());
|
|
aux = roots.array().abs();
|
|
std::sort(rootModuli.begin(), rootModuli.end());
|
|
bool distinctModuli = true;
|
|
for (size_t i = 1; i < rootModuli.size() && distinctModuli; ++i) {
|
|
if (internal::isApprox(rootModuli[i], rootModuli[i - 1])) {
|
|
distinctModuli = false;
|
|
}
|
|
}
|
|
VERIFY(evalToZero || !distinctModuli);
|
|
|
|
return distinctModuli;
|
|
}
|
|
|
|
template <int Deg, typename POLYNOMIAL>
|
|
void evalSolver(const POLYNOMIAL& pols) {
|
|
typedef typename POLYNOMIAL::Scalar Scalar;
|
|
|
|
typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
|
|
|
|
PolynomialSolverType psolve;
|
|
aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve);
|
|
}
|
|
|
|
template <int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS>
|
|
void evalSolverSugarFunction(const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots) {
|
|
using std::sqrt;
|
|
typedef typename POLYNOMIAL::Scalar Scalar;
|
|
typedef typename POLYNOMIAL::RealScalar RealScalar;
|
|
|
|
typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
|
|
|
|
PolynomialSolverType psolve;
|
|
if (aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve)) {
|
|
// It is supposed that
|
|
// 1) the roots found are correct
|
|
// 2) the roots have distinct moduli
|
|
|
|
// Test realRoots
|
|
std::vector<RealScalar> calc_realRoots;
|
|
psolve.realRoots(calc_realRoots, test_precision<RealScalar>());
|
|
VERIFY_IS_EQUAL(calc_realRoots.size(), (size_t)real_roots.size());
|
|
|
|
const RealScalar psPrec = sqrt(test_precision<RealScalar>());
|
|
|
|
for (size_t i = 0; i < calc_realRoots.size(); ++i) {
|
|
bool found = false;
|
|
for (size_t j = 0; j < calc_realRoots.size() && !found; ++j) {
|
|
if (internal::isApprox(calc_realRoots[i], real_roots[j], psPrec)) {
|
|
found = true;
|
|
}
|
|
}
|
|
VERIFY(found);
|
|
}
|
|
|
|
// Test greatestRoot
|
|
VERIFY(internal::isApprox(roots.array().abs().maxCoeff(), abs(psolve.greatestRoot()), psPrec));
|
|
|
|
// Test smallestRoot
|
|
VERIFY(internal::isApprox(roots.array().abs().minCoeff(), abs(psolve.smallestRoot()), psPrec));
|
|
|
|
bool hasRealRoot;
|
|
// Test absGreatestRealRoot
|
|
RealScalar r = psolve.absGreatestRealRoot(hasRealRoot);
|
|
VERIFY(hasRealRoot == (real_roots.size() > 0));
|
|
if (hasRealRoot) {
|
|
VERIFY(internal::isApprox(real_roots.array().abs().maxCoeff(), abs(r), psPrec));
|
|
}
|
|
|
|
// Test absSmallestRealRoot
|
|
r = psolve.absSmallestRealRoot(hasRealRoot);
|
|
VERIFY(hasRealRoot == (real_roots.size() > 0));
|
|
if (hasRealRoot) {
|
|
VERIFY(internal::isApprox(real_roots.array().abs().minCoeff(), abs(r), psPrec));
|
|
}
|
|
|
|
// Test greatestRealRoot
|
|
r = psolve.greatestRealRoot(hasRealRoot);
|
|
VERIFY(hasRealRoot == (real_roots.size() > 0));
|
|
if (hasRealRoot) {
|
|
VERIFY(internal::isApprox(real_roots.array().maxCoeff(), r, psPrec));
|
|
}
|
|
|
|
// Test smallestRealRoot
|
|
r = psolve.smallestRealRoot(hasRealRoot);
|
|
VERIFY(hasRealRoot == (real_roots.size() > 0));
|
|
if (hasRealRoot) {
|
|
VERIFY(internal::isApprox(real_roots.array().minCoeff(), r, psPrec));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Scalar_, int Deg_>
|
|
void polynomialsolver(int deg) {
|
|
typedef typename NumTraits<Scalar_>::Real RealScalar;
|
|
typedef internal::increment_if_fixed_size<Deg_> Dim;
|
|
typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType;
|
|
typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
|
|
typedef Matrix<RealScalar, Deg_, 1> RealRootsType;
|
|
|
|
cout << "Standard cases" << endl;
|
|
PolynomialType pols = PolynomialType::Random(deg + 1);
|
|
evalSolver<Deg_, PolynomialType>(pols);
|
|
|
|
cout << "Hard cases" << endl;
|
|
Scalar_ multipleRoot = internal::random<Scalar_>();
|
|
EvalRootsType allRoots = EvalRootsType::Constant(deg, multipleRoot);
|
|
roots_to_monicPolynomial(allRoots, pols);
|
|
evalSolver<Deg_, PolynomialType>(pols);
|
|
|
|
cout << "Test sugar" << endl;
|
|
RealRootsType realRoots = RealRootsType::Random(deg);
|
|
roots_to_monicPolynomial(realRoots, pols);
|
|
evalSolverSugarFunction<Deg_>(pols, realRoots.template cast<std::complex<RealScalar> >().eval(), realRoots);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(polynomialsolver) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1((polynomialsolver<float, 1>(1)));
|
|
CALL_SUBTEST_2((polynomialsolver<double, 2>(2)));
|
|
CALL_SUBTEST_3((polynomialsolver<double, 3>(3)));
|
|
CALL_SUBTEST_4((polynomialsolver<float, 4>(4)));
|
|
CALL_SUBTEST_5((polynomialsolver<double, 5>(5)));
|
|
CALL_SUBTEST_6((polynomialsolver<float, 6>(6)));
|
|
CALL_SUBTEST_7((polynomialsolver<float, 7>(7)));
|
|
CALL_SUBTEST_8((polynomialsolver<double, 8>(8)));
|
|
|
|
CALL_SUBTEST_9((polynomialsolver<float, Dynamic>(internal::random<int>(9, 13))));
|
|
CALL_SUBTEST_10((polynomialsolver<double, Dynamic>(internal::random<int>(9, 13))));
|
|
CALL_SUBTEST_11((polynomialsolver<float, Dynamic>(1)));
|
|
CALL_SUBTEST_12((polynomialsolver<std::complex<double>, Dynamic>(internal::random<int>(2, 13))));
|
|
}
|
|
}
|