eigen/Eigen/src/Core/Matrix.h

502 lines
18 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
/** \class Matrix
*
* \brief The matrix class, also used for vectors and row-vectors
*
* Eigen's matrix class is the work-horse for all \em dense matrices and vectors within Eigen. Dense
* matrices may either be allocated on the stack, using the template parameters above, or \em dynamically
* by specifying \em Dynamic as the size.
*
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param _Rows Number of rows, or \b Dynamic
* \param _Cols Number of columns, or \b Dynamic
* \param _StorageOrder Either RowMajor or ColMajor. The default is ColMajor.
* \param _MaxRows Maximum number of rows. Defaults to \a _Rows. See note below.
* \param _MaxCols Maximum number of columns. Defaults to \a _Cols. See note below.
*
* \note <b>Dynamic size:</b>
* \em Dynamic in this context only means specified at run-time instead of at compile time. Dynamic
* matrices <em>do not</em> expand dynamically.
*
* \note <b>Max Rows / Columns:</b>
* The most common reason to use these values is when you don't know the exact number of columns or rows,
* but know that they will remain below the given value. Then you can set the \a _MaxRows or \a _MaxCols
* to that value, and set \a _Rows or \a _Cols to \a Dynamic.
*
* \warning For very large matrices, \em Dynamic allocation should be used, otherwise the stack will be
* overflowed.
*
* Eigen provides a number of typedefs to make working with matrices and vector simpler:
*
* For example:
*
* \li <b>\c MatrixXf is a dynamically sized matrix of floats (\c Matrix<float, Dynamic, Dynamic>)</b>
* \li <b>\c VectorXf is a dynamically sized vector of floats (\c Matrix<float, Dynamic, 1>)</b>
*
* \li \c Matrix2d is a 2-row by 2-column square matrix of doubles (\c Matrix<double, 2, 2>)
* \li \c RowVector3i is a row-vector with three elements containing integers (\c Matrix<int, 1, 3>)
*
* \see matrixtypedefs for a complete list of predefined \em Matrix and \em Vector types.
*
* You can access elements of vectors and matrices using normal subscripting:
*
* \code
*
* Eigen::VectorXf v(10);
* v[0] = 0.1;
* v[1] = 0.2;
*
* Eigen::MatrixXi m(10, 10);
* m(0, 1) = 1;
* m(0, 2) = 2;
* m(0, 3) = 3;
*
* \endcode
*
* \see MatrixBase for the majority of the API methods for matrices
*/
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = RandomAccessPattern
};
};
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
class Matrix
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols> >
#ifdef EIGEN_VECTORIZE
, public ei_with_aligned_operator_new<_Scalar,ei_size_at_compile_time<_Rows,_Cols>::ret>
#endif
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
friend class Eigen::Map<Matrix, Unaligned>;
friend class Eigen::Map<Matrix, Aligned>;
protected:
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime> m_storage;
public:
inline int rows() const { return m_storage.rows(); }
inline int cols() const { return m_storage.cols(); }
inline int stride(void) const
{
if(Flags & RowMajorBit)
return m_storage.cols();
else
return m_storage.rows();
}
inline const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
inline const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
inline Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
inline Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
inline PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
inline PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
inline void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
inline void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
inline const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
inline Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* Makes sense for dynamic-size matrices only.
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* \sa resize(int) for vectors.
*/
inline void resize(int rows, int cols)
{
ei_assert(rows > 0
&& (MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows * cols, rows, cols);
}
/** Resizes \c *this to a vector of length \a size
*
* \sa resize(int,int) for the details.
*/
inline void resize(int size)
{
ei_assert(size>0 && "a vector cannot be resized to 0 length");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
}
/** Copies the value of the expression \a other into \c *this.
*
* \warning Note that the sizes of \c *this and \a other must match.
* If you want automatic resizing, then you must use the function set().
*
* As a special exception, copying a row-vector into a vector (and conversely)
* is allowed.
*
* \sa set()
*/
template<typename OtherDerived>
inline Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
ei_assert(m_storage.data()!=0 && "you cannot use operator= with a non initialized matrix (instead use set()");
return Base::operator=(other.derived());
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* This function is the same than the assignment operator = excepted that \c *this might
* be resized to match the dimensions of \a other.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=()
*/
template<typename OtherDerived>
inline Matrix& set(const MatrixBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
return Base::operator=(other.derived());
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
inline Matrix& operator=(const Matrix& other)
{
return operator=<Matrix>(other);
}
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=)
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=)
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=)
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=)
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size null.
* \warning while creating such an \em null matrix is allowed, it \b cannot
* \b be \b used before having being resized or initialized with the function set().
* In particular, initializing a null matrix with operator = is not supported.
* Finally, this constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
* Here are some examples:
* \code
* MatrixXf r = MatrixXf::Random(3,4); // create a random matrix of floats
* MatrixXf m1, m2; // creates two null matrices of float
*
* m1 = r; // illegal (raise an assertion)
* r = m1; // illegal (raise an assertion)
* m1 = m2; // illegal (raise an assertion)
* m1.set(r); // OK
* m2.resize(3,4);
* m2 = r; // OK
* \endcode
*
* \sa resize(int,int), set()
*/
inline explicit Matrix() : m_storage()
{
ei_assert(RowsAtCompileTime > 0 && ColsAtCompileTime > 0);
}
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
inline explicit Matrix(int dim)
: m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(dim > 0);
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
}
/** This constructor has two very different behaviors, depending on the type of *this.
*
* \li When Matrix is a fixed-size vector type of size 2, this constructor constructs
* an initialized vector. The parameters \a x, \a y are copied into the first and second
* coords of the vector respectively.
* \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and
* \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead.
*/
inline Matrix(int x, int y) : m_storage(x*y, x, y)
{
if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2)
|| (RowsAtCompileTime == 2 && ColsAtCompileTime == 1))
{
m_storage.data()[0] = Scalar(x);
m_storage.data()[1] = Scalar(y);
}
else
{
ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x)
&& y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y));
}
}
/** constructs an initialized 2D vector with given coefficients */
inline Matrix(const float& x, const float& y)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
/** constructs an initialized 2D vector with given coefficients */
inline Matrix(const double& x, const double& y)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
/** constructs an initialized 3D vector with given coefficients */
inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** constructs an initialized 4D vector with given coefficients */
inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
inline Matrix(const MatrixBase<OtherDerived>& other)
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
//Base::operator=(other.derived());
}
/** Copy constructor */
inline Matrix(const Matrix& other)
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::lazyAssign(other);
}
/** Destructor */
inline ~Matrix() {}
/** Override MatrixBase::eval() since matrices don't need to be evaluated, it is enough to just read them.
* This prevents a useless copy when doing e.g. "m1 = m2.eval()"
*/
const Matrix& eval() const
{
return *this;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
void swap(Matrix& other)
{
if (Base::SizeAtCompileTime==Dynamic)
m_storage.swap(other.m_storage);
else
this->Base::swap(other);
}
/////////// Geometry module ///////////
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
#endif
};
/** \defgroup matrixtypedefs Global matrix typedefs
*
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common matrix and vector types.
*
* The general patterns are the following:
*
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
*
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
* a fixed-size vector of 4 complex floats.
*
* \sa class Matrix
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_TYPEDEFS_LARGE
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_MATRIX_H