eigen/Eigen/src/ThreadPool/ForkJoin.h

152 lines
6.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2025 Weiwei Kong <weiweikong@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_THREADPOOL_FORKJOIN_H
#define EIGEN_THREADPOOL_FORKJOIN_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
// ForkJoinScheduler provides implementations of various non-blocking ParallelFor algorithms for unary
// and binary parallel tasks. More specfically, the implementations follow the binary tree-based
// algorithm from the following paper:
//
// Lea, D. (2000, June). A java fork/join framework. *In Proceedings of the
// ACM 2000 conference on Java Grande* (pp. 36-43).
//
// For a given binary task function `f(i,j)` and integers `num_threads`, `granularity`, `start`, and `end`,
// the implemented parallel for algorithm schedules and excutes at most `num_threads` of the functions
// from the following set in parallel (either synchronously or asynchronously):
//
// f(start,start+s_1), f(start+s_1,start+s_2), ..., f(start+s_n,end)
//
// where `s_{j+1} - s_{j}` and `end - s_n` are roughly within a factor of two of `granularity`. For a unary
// task function `g(k)`, the same operation is applied with
//
// f(i,j) = [&](){ for(int k=i; k<j; ++k) g(k); };
//
// Note that the parameter `granularity` should be tuned by the user based on the trade-off of running the
// given task function sequentially vs. scheduling individual tasks in parallel. An example of a partially
// tuned `granularity` is in `Eigen::CoreThreadPoolDevice::parallelFor(...)` where the template
// parameter `PacketSize` and float input `cost` are used to indirectly compute a granularity level for a
// given task function.
//
// Example usage #1 (synchronous):
// ```
// ThreadPool thread_pool(num_threads);
// ForkJoinScheduler::ParallelFor(0, num_tasks, granularity, std::move(parallel_task), &thread_pool);
// ```
//
// Example usage #2 (asynchronous):
// ```
// ThreadPool thread_pool(num_threads);
// Barrier barrier(num_completions);
// auto done = [&](){barrier.Notify();};
// for (int k=0; k<num_async_calls; ++k) {
// thread_pool.Schedule([&](){
// ForkJoinScheduler::ParallelFor(0, num_tasks, granularity, parallel_task, done, &thread_pool);
// });
// }
// barrier.Wait();
// ```
class ForkJoinScheduler {
public:
// Runs `do_func` asynchronously for the range [start, end) with a specified granularity. `do_func` should
// either be of type `std::function<void(int)>` or `std::function<void(int, int)`.
// If `end > start`, the `done` callback will be called `end - start` times when all tasks have been
// executed. Otherwise, `done` is called only once.
template <typename DoFnType>
static void ParallelForAsync(int start, int end, int granularity, DoFnType do_func, std::function<void()> done,
Eigen::ThreadPool* thread_pool) {
if (start >= end) {
done();
return;
}
ForkJoinScheduler::RunParallelForAsync(start, end, granularity, do_func, done, thread_pool);
}
// Synchronous variant of Async::ParallelFor.
template <typename DoFnType>
static void ParallelFor(int start, int end, int granularity, DoFnType do_func, Eigen::ThreadPool* thread_pool) {
if (start >= end) return;
auto dummy_done = []() {};
Barrier barrier(1);
thread_pool->Schedule([start, end, granularity, thread_pool, &do_func, &dummy_done, &barrier]() {
ForkJoinScheduler::ParallelForAsync(start, end, granularity, do_func, dummy_done, thread_pool);
barrier.Notify();
});
barrier.Wait();
}
private:
// Schedules `right_thunk`, runs `left_thunk` and runs other tasks until
// `right_thunk` has finished.
template <typename LeftType, typename RightType>
static void ForkJoin(LeftType&& left_thunk, RightType&& right_thunk, Eigen::ThreadPool* thread_pool) {
std::atomic<bool> right_done(false);
auto execute_right = [&right_thunk, &right_done]() {
std::forward<RightType>(right_thunk)();
right_done.store(true, std::memory_order_release);
};
thread_pool->Schedule(execute_right);
std::forward<LeftType>(left_thunk)();
Eigen::ThreadPool::Task task;
while (!right_done.load(std::memory_order_acquire)) {
thread_pool->MaybeGetTask(&task);
if (task.f) task.f();
}
}
// Runs `do_func` in parallel for the range [start, end). The main recursive asynchronous runner that
// calls `ForkJoin`.
static void RunParallelForAsync(int start, int end, int granularity, std::function<void(int)>& do_func,
std::function<void()>& done, Eigen::ThreadPool* thread_pool) {
std::function<void(int, int)> wrapped_do_func = [&do_func](int start, int end) {
for (int i = start; i < end; ++i) do_func(i);
};
ForkJoinScheduler::RunParallelForAsync(start, end, granularity, wrapped_do_func, done, thread_pool);
}
// Variant of `RunAsyncParallelFor` that uses a do function that operates on an index range.
// Specifically, `do_func` takes two arguments: the start and end of the range.
static void RunParallelForAsync(int start, int end, int granularity, std::function<void(int, int)>& do_func,
std::function<void()>& done, Eigen::ThreadPool* thread_pool) {
if ((end - start) <= granularity) {
do_func(start, end);
for (int j = 0; j < end - start; ++j) done();
} else {
// Typical workloads choose initial values of `{start, end, granularity}` such that `start - end` and
// `granularity` are powers of two. Since modern processors usually implement (2^x)-way
// set-associative caches, we minimize the number of cache misses by choosing midpoints that are not
// powers of two (to avoid having two addresses in the main memory pointing to the same point in the
// cache). More specifically, we restrict the set of candidate midpoints to:
//
// P := {start, start + granularity, start + 2*granularity, ..., end},
//
// and choose the entry in `P` at (roughly) the 9/16 mark.
const int size = end - start;
const int mid = start + Eigen::numext::div_ceil(9 * (size + 1) / 16, granularity) * granularity;
ForkJoinScheduler::ForkJoin(
[start, mid, granularity, &do_func, &done, thread_pool]() {
RunParallelForAsync(start, mid, granularity, do_func, done, thread_pool);
},
[mid, end, granularity, &do_func, &done, thread_pool]() {
RunParallelForAsync(mid, end, granularity, do_func, done, thread_pool);
},
thread_pool);
}
}
};
} // namespace Eigen
#endif // EIGEN_THREADPOOL_FORKJOIN_H